• Title/Summary/Keyword: retrofit/repair

Search Result 45, Processing Time 0.022 seconds

Empirical Prediction for the Compressive Strength and Strain of Concrete Confined with FRP Wrap (FRP로 보강된 콘크리트의 강도 및 변형률 예측)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.253-263
    • /
    • 2007
  • Previous researches showed that confined concrete with Fiber-Reinforced Plastic (FRP) sheets significantly improves the strength and ductility of concrete compared with unconfined concrete. However, the retrofit design of concrete with FRP materials requires an accurate estimate of the performance enhancement due to the confinement mechanism. The object of this research is to predict the compressive strength and strain of concrete confined with FRP wraps. For the purpose of this research, 102 test specimens were fabricated and loaded statically under uniaxial compression. Axial load, axial and lateral strains were investigated to predict the ultimate stress and strain. Also, to achieve reliability of proposed strength and strain models for FRP-confined concrete, another series of uniaxial compression test results were used. This paper presents strength and strain models for FRP-confined concrete. The proposed models to estimate the ultimate stresses and failure strains produce satisfactory predictions as compared to current design equations. In conclusion, it is proposed that the modified stress-strain model of concrete cylinders could be effectively used for the repair and retrofit of concrete columns.

Methodologies for Survey and Retrofit of Small Dams Pierced by Diversion Tunnel (복통을 갖는 저수지의 결함 조사 및 보수보강 방안)

  • Jang, Bong Seok;Im, Eun Sang;Oh, Byung Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2008
  • There are almost 18,000 dams including about 1,200 large dams in Korea. The large dams are well operated and maintained by KWATER(Korea Water Resource Corporation), KRC(Korea Rural Community & Agriculture Corporation) and KHNP(Korea Hydro & Nuclear Power Co., Ltd.). Several research reports concern with the safety of these large dams are presented but there is no paper concerned with small dams which has diversion tunnel through the dam body. The purpose of this study is to show the common defects of small dams according to various cases of degradation of dams and the repair and retrofit methods which applied to the damaged dams. And this study performed resistivity survey to evaluate the effect of retrofitting dam. Also, this study tries to present the solution which concerned with these common defects in maintenance and design steps.

Seismic Performance Evaluation of RC Bridge Piers Using Time-dependent Element (시간종속 요소를 이용한 철근콘크리트교량 교각의 내진 성능 평가)

  • Lee, Do Hyung;Jeon, Jeong-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.237-246
    • /
    • 2006
  • In order to evaluate the seismic performance of damaged reinforced concrete members, particularly bridge piers, an inelastic time-dependent element is proposed. The proposed element enables increased characteristics due to structural intervention(i.e., repair or retrofitting) to be accurately reflected to the degraded strength and stiffness of the members. The inelastic time-dependent element having both birth and death time can freely be activated within the user-defined time intervals during static and dynamic time-history analysis. Comparative studies are carried out for reinforced concrete bridge piers that are repaired and retrofitted. Analytical predictions using the developed element show reasonable correlation with experimental results. Also conducted is a nonlinear time-history analysis of a reinforced concrete bridge under multiple earthquakes. The comparative analytical results prove the validation of current development. In all, it is concluded that the present element is capable of providing salient features for the healthy evaluation of seismic performance and hence seismic stability assessment of RC bridge piers being repaired and retrofitted.

Shape memory alloy-based smart RC bridges: overview of state-of-the-art

  • Alam, M.S.;Nehdi, M.;Youssef, M.A.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.367-389
    • /
    • 2008
  • Shape Memory Alloys (SMAs) are unique materials with a paramount potential for various applications in bridges. The novelty of this material lies in its ability to undergo large deformations and return to its undeformed shape through stress removal (superelasticity) or heating (shape memory effect). In particular, Ni-Ti alloys have distinct thermomechanical properties including superelasticity, shape memory effect, and hysteretic damping. SMA along with sensing devices can be effectively used to construct smart Reinforced Concrete (RC) bridges that can detect and repair damage, and adapt to changes in the loading conditions. SMA can also be used to retrofit existing deficient bridges. This includes the use of external post-tensioning, dampers, isolators and/or restrainers. This paper critically examines the fundamental characteristics of SMA and available sensing devices emphasizing the factors that control their properties. Existing SMA models are discussed and the application of one of the models to analyze a bridge pier is presented. SMA applications in the construction of smart bridge structures are discussed. Future trends and methods to achieve smart bridges are also proposed.

Japan's experience on long-span bridges monitoring

  • Fujino, Yozo;Siringoringo, Dionysius M.;Abe, Masato
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.233-257
    • /
    • 2016
  • This paper provides an overview on development of long-span bridges monitoring in Japan, with emphasis on monitoring strategies, types of monitoring system, and effective utilization of monitoring data. Because of severe environment condition such as high seismic activity and strong wind, bridge monitoring systems in Japan historically put more emphasis on structural evaluation against extreme events. Monitoring data were used to verify design assumptions, update specifications, and facilitate the efficacy of vibration control system. These were among the first objectives of instrumentation of long-span bridges in a framework of monitoring system in Japan. Later, monitoring systems were also utilized to evaluate structural performance under various environment and loading conditions, and to detect the possible structural deterioration over the age of structures. Monitoring systems are also employed as the basis of investigation and decision making for structural repair and/or retrofit when required. More recent interest has been to further extend application of monitoring to facilitate operation and maintenance, through rationalization of risk and asset management by utilizing monitoring data. The paper describes strategies and several examples of monitoring system and lessons learned from structural monitoring of long-span bridges in Japan.

Seismic Collapse Risk for Non-Ductile Reinforced Concrete Buildings According to Seismic Design Categories (비연성 철근콘크리트 건물의 내진설계범주에 따른 붕괴 위험성 평가)

  • Kim, Minji;Han, Sang Whan;Kim, Taeo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.161-168
    • /
    • 2021
  • Existing old reinforced concrete buildings could be vulnerable to earthquakes because they were constructed without satisfying seismic design and detail requirements. In current seismic design standards, the target collapse probability for a given Maximum Considered Earthquake (MCE) ground-shaking hazard is defined as 10% for ordinary buildings. This study aims to estimate the collapse probabilities of a three-story, old, reinforced concrete building designed by only considering gravity loads. Four different seismic design categories (SDC), A, B, C, and D, are considered. This study reveals that the RC building located in the SDC A region satisfies the target collapse probability. However, buildings located in SDC B, C, and D regions do not meet the target collapse probability. Since the degree of exceedance of the target probability increases with an increase in the SDC level, it is imminent to retrofit non-ductile RC buildings similar to the model building. It can be confirmed that repair and reinforcement of old reinforced concrete buildings are required.

Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts (기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석)

  • Kim, D.A.;Lee, K.K.;Ahn, D.G.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

Seismic behavior of RC frames with partially attached steel shear walls: A numerical study

  • Kambiz Cheraghi;Majid Darbandkohi;Mehrzad TahamouliRoudsari;Sasan Kiasat
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.443-454
    • /
    • 2023
  • Steel shear walls are used to strengthen steel and concrete structures. One such system is Partial Attached Steel Shear Walls (PASSW), which are only connected to frame beams. This system offers both structural and architectural advantages. This study first calibrated the numerical model of RC frames with and without PASSW using an experimental sample. The seismic performance of the RC frame was evaluated by 30 non-linear static analyses, which considered stiffness, ductility, lateral strength, and energy dissipation, to investigate the effect of PASSW width and column axial load. Based on numerical results and a curve fitting technique, a lateral stiffness equation was developed for frames equipped with PASSW. The effect of the shear wall location on the concrete frame was evaluated through eight analyses. Nonlinear dynamic analysis was performed to investigate the effect of the shear wall on maximum frame displacement using three earthquake records. The results revealed that if PASSW is designed with appropriate stiffness, it can increase the energy dissipation and ductility of the frame by 2 and 1.2 times, respectively. The stiffness and strength of the frame are greatly influenced by PASSW, while axial force has the most significant negative impact on energy dissipation. Furthermore, the location of PASSW does not affect the frame's behavior, and it is possible to have large openings in the frame bay.

Development of CFS Jacketing Retrofit Method for Rectangular High Strength Concrete Columns by Cross Sectional Shape Modification (4각형 고강도 콘크리트 기둥 단면 변형을 통한 CFS Jacketing 보강방법 개발)

  • Lee, Jong-Gil;Kim, Jang-Ho Jay;Park, Seok-Kyun;Kim, Jin-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.153-161
    • /
    • 2010
  • Numerous past studies have shown that safety and serviceability of many concrete infrastructures and buildings built in 1970's have far less strength capacities than their original intended design capacities, thereby requiring repair and strengthening. Currently, aged concrete structures are being repaired using various methods developed in the past. Unfortunately, these methods do not consider the specific conditions that these members are under, but they merely attach repairing materials on the external surface for random strength improvements. Therefore, in order to improve repair and strengthening methods by considering composite behavior between repairing material and structural member, enhanced construction methodologies are needed. Also, the enhanced repairing and strengthening methods must be able to be implemented on structural members constructed using high performance concrete to meet the present construction demand of building mammoth structures. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete (HSC) columns that can effectively improve column performance is developed. A square HSC column's cross-sectional shape is converted to an octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is surface wrapped using Carbon Fiber Sheets (CFS). The method allows maximum usage of confinement effect from externally jacketing CFS to improve strength and ductility of repaired HSC columns. The research results are discussed in detail.

Flexural Experiments on Reinforced Concrete Beams Strengthened with ECC and High Strength Rebar (ECC와 고장력 철근으로 보강된 철근콘크리트 보의 휨 실험)

  • Cho, Hyun-Woo;Bang, Jin-Wook;Han, Byung-Chan;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.503-509
    • /
    • 2011
  • ECC is a micro-mechanically designed cementitious composite which exhibits tightly controlled crack width and strain hardening behavior in uniaxial tension while using a moderate amount of reinforcing fiber, typically less than 2% fiber volume fraction. Recently, a variety of applications of this material ranging from repair and retrofit of structures, cast-in-place structures, to precast structural elements requiring high ductility are developed. In the present study, a retrofitting method using ECC reinforced with high strength rebar was proposed to enhance load-carrying capacity and crack control performance of deteriorated reinforced concrete (RC) beams. Six beam specimens were designed and tested under a four-point loading setup. The flexural test revealed that load-carrying capacity and crack control performance were significantly enhanced by the use of ECC and high strength rebar. This result will be useful for practical field applications of the proposed retrofitting method.