무선 센서 네트워크에서는 멀티 홉 전송동안 높은 패킷 손실률이 발생하기 때문에 신뢰성 있는 데이터 전송방안이 필요하다. 특히, 화재 경보 시스템과 같은 event-driven 데이터가 발생하는 경우, 신뢰성 있는 데이터 전송을 위해서는 손실된 패킷을 복원하기 위한 재전송 방안이 제공되어야 한다. 손실된 데이터의 재전송은 데이터를 캐쉬하고 있는 노드에 요청이 되기 때문에, 데이터를 캐쉬하고 있는 노드는 모든 데이터 패킷을 버퍼에서 유지하고 있어야 한다. 그러나 일반적으로 센서 네트워크의 노드들은 제한된 자원을 가지 있다. 따라서 신뢰성 있는 데이터 전송을 위해서는 손실 패킷의 재전송 방안과 노드의 버퍼 관리 기법이 함께 제공되어야 한다. 본 논문에서는 전송 데이터의 신뢰도에 따라 데이터의 캐쉬지점을 결정하여 손실된 데이터를 복원하는 손실 복원 기법을 사용하는 데이터 전송에서의 효율적인 버퍼 관리기법을 제안하고, 컴퓨터 시뮬레이션을 통하여 제안하는 방안의 우수성을 검증하였다.
본 논문에서는 이종망간의 핸드오버 환경에서 MN가 종단간이동성 관리를 하면서 동시에 네트워크의 링크 특성을 고려하여 TCP 흐름 제어를 할 수 있는 새로운 버티컬 핸드오프 기법을 제안한다. MN가 버티컬 핸드오버를 수행할 때 종단간 이동성 관리를 위해서 SIP INFO 메시지를 이용하여 CN에게 새로운 네트워크에서 사용할 자신의 IP 주소를 전달하게 되면 CN는 IP 인캡슐레이션을 통해 MN에게 데이터 패킷을 전달한다. 만약 MN가 WLAN에서 cdma2000망으로 이동하는 상향 핸드오버가 발생하면 RTT의 차이로 TCP 재전송 타임아웃이 발생하게 된다. 그 결과 TCP 혼잡 윈도우 크기가 1로 감소되어 결국 TCP Throughput이 떨어지게 된다. 본 논문에서는 이러한 현상을 방지하기 위해 CN가 probe packet을 전송하여 RTT를 측정하는 방법과 각 네트워크의 전송대역의 비에 따라 재전송 타이머를 조정하는 두 가지 방법을 제안한다. 제안하는 버티컬 핸드오버 기법의 성능을 NS-2 시뮬레이션을 통해 비교 분석하였다.
본 논문은 클러스터 기반 센서 망에 적합한 에너지 효율적인 토폴로지 관리 기법 개발을 위한 기반 연구로서, 세가지 종류의 데이터 전달 방법의 성능을 비교 분석한다. 첫 번째 방법에서는 각 클러스터의 헤더들만 무선 송수신 모듈을 활성화시켜 RTS/CTS/DATA/ACK 메시지 송수신에 참여하구 두 번째 방법에서는 각 클러스터당 다수 노드들이 메시지 교환에 참여한다. 마지막 방법에서는 각 클러스터의 헤더들만 RTS/CTS 메시지 교환을 위하여 무선 송수신 모듈을 활성화하는데, 자신의 클러스터 ID가 목적지 클러스터로 지정되어 있는 RTS 메시지를 수신한 클러스터 헤더는 다수 노드들의 무선 송수신 모듈을 활성화시켜 DATA 메시지 수신과 ACK 메시지 송신에 참여하도록 한다. 시뮬레이션을 통하여, 클러스터당 활성화될 노드의 수와 부하 및 패킷 손실 확률에 따라 이상의 세 가지 방법의 에너지 소모량을 비교 분석한다.
통신시스템에서 다수의 안테나를 이용하는 MIMO 기술이 활발히 연구 중에 있다. 그러나 많은 무선 통신기기들은 사이즈, 비용, 하드웨어의 복잡성으로 인하여 적용 가능한 안테나의 수에 제약을 가진다. 따라서 본 논문에서는 MIMO 기술의 장점을 가지면서 새로운 기술로 각광받고 있는 협력통신 시스템을 이용하여 cross-layer 부호기법을 이용한 H-ARQ 기반의 협력통신 시스템을 제안하였다. 본 논문에서 제안하는 협력통신 시스템은 수신 신호의 복호가 완벽할 시에는 ACK 신호를 소스 노드와 릴레이 노드로 전송하여 다음 신호를 요청한다. 만약 복호 후 오류가 있을 시에는 NACK 신호를 전송하여 릴레이 노드에서 생성되어진 새로운 패킷을 요청하여 복호를 하게된다. 제안하는 협력통신 시스템은 일반적인 1:1 통신 시스템보다 신뢰도와 전송효율이 더 좋음을 시뮬레이션을 통하여 확인하였다.
In this paper, we present the performance evaluation of the reliable cooperative media access control (RCO-MAC) protocol, which has been proposed in [1] by us in order to enhance system throughput in bad wireless channel environments. The performance of this protocol is evaluated with computer simulation as well as mathematical analysis in this paper. The system throughput, two types of average delays, average channel access delay, and average system delay, which includes the queuing delay in the buffer, are used as performance metrics. In addition, two different traffic models are used for performance evaluation: The saturated traffic model for computing system throughput and average channel access delay, and the exponential data generation model for calculating average system delay. The numerical results show that the RCO-MAC protocol proposed by us provides over 20% more system throughput than the relay distributed coordination function (rDCF) scheme. The numerical results show that the RCO-MAC protocol provides a slightly higher average channel access delay over a greater number of source nodes than the rDCF. This is because a greater number of source nodes provide more opportunities for cooperative request to send (CRTS) frame collisions and because the value of the related retransmission timer is greater in the RCO-MAC protocol than in the rDCF protocol. The numerical results also confirm that the RCO-MAC protocol provides better average system delay over the whole gamut of the number of source nodes than the rDCF protocol.
최근 AODV 라우팅 프로토콜은 무선센서네트워크에서 노드 간에 데이터 전송방식을 추구하므로 요구기반방식중 가장 널리 사용되고 있다. AODV는 활성화 경로(activity route)만 라우팅 테이블을 유지하기 때문에 라우팅 패킷의 오버헤드가 적고, 경로 단절시 경로 복구를 재설정할 수 있는 장점을 가지고 있다. 하지만 경로 복구를 위해 네트워크 대역폭의 낭비가 과다하고, 경로 복구 시간이 오래 걸린다는 단점을 가지고 있다. 따라서 본 논문에서는 AODV기반 무선센서네트워크 환경에서 경로 단절이 발생한 경우에 저-재전송을 위한 효율적인 경로 복구방법을 제안한다. 제안한 방법은 지역경로복구의 영역을 확대하고, 확대된 지역경로복구 영역을 제한하기 위하여 노드간의 거리, 에너지량을 고려하여 RREQ 메시지의 개수를 제한하여 경로를 효율적으로 복구한다. 실험결과, 제안한 AODV 방법은 기존 방법보다 패킷 폐기율이 15.43% 감소하고, 경로 재설정시 지연시간은 평균적으로 0.20sec 단축되었다.
3GPP의 Evolved Packet System (EPS)는 LTE, HSPA/HSPA+는 물론 non-3GPP 네트워크까지 포함한 다양한 액세스 네트워크를 지원하는 all-IP 기반 시스템이다. 최근, 패킷수준 QoS를 지원하는 IP flow에 대한 요구사항이 EPS에 추가되었다. 본 논문에서는 이러한 패킷수준 QoS 요구사항을 3G LTE에서 효과적으로 지원하기 위한 adaptive modulation coding (AMC) 선택 기법을 제안한다. 제안방법에서는 전송오류께 따른 재전송을 패킷 QoS 만족에 가장 큰 영향을 끼치는 요소로 보고, 패킷별로 다른 최대 패킷전송 오류 확률 $P_{max}$를 적용하여 AMC 전송 모드를 선정하는 기준으로 삼는다. 이러한 $P_{max}$를 결정할 때는 채널 상황은 물론 패킷별 QoS 요구상황, 그리고 NACK-to-ACK 에러 확률을 고려하여 결정한다. 이러한 방식의 목적은 QoS를 만족시키면서 동시에 spectral efficiency를 최대로 하는 것이다. 시뮬레이션을 통해 제안한 방법과 기존 방법을 비교한 결과, 지연허용 시간 위반과 재전송과 관련깊은 status report 발생은 10% 감소하고, throughput이 12% 증가했음을 확인할 수 있었다.
본 논문은 type I 혼합-자동 반복 요구 (hybrid automatic repeat request: H-ARQ) 시스템에서 저밀도 패리티검사 (low-density parity-check: LDPC)로 부호화된 직교 주파수 분할 다중화 (orthogonal frequency division multiplexing: OFDM) 서브프레임의 전송 순서를 균등 결합 전력이 할당되도록 조정한 재전송 방법을 기초로 성능 개선을 채널 용량을 사용하여 분석하고, 계층 복호 방법을 적용하여 H-ARQ 재전송 기법의 수렴 속도 개선을 확인한다. 구체적으로 임의의 서브프레임 재전송 패턴에 대하여 채널 용량이 클수록 비트오류율 (bit error rate: BER) 성능도 우수하다는 사실을 검증한다. 그러므로 각 서브프레임에 대하여 균등 결합 전력 할당을 보장하는 서브프레임 재전송 패턴은 채널 용량을 최대로 하며, 임의의 다른 서브프레임 전송 순서 조정을 통한 재전송 패턴보다 성능이 우수하다. 결국 균등 결합 전력 할당을 만족하도록 서브프레임 순서를 조정하는 재전송 방법은 기존 체이스 결합 (Chase combining)보다 복호 복잡도를 증가시키지 않으면서도 주목할 만한 성능 개선을 보인다.
최근 비디오와 오디오와 같은 멀티미디어 데이터를 전송할 수 있는 무선 멀티 미디어 센서 네트워크의 개발의 필요성이 커지고 있으며, 멀티미디어 데이터의 효율적 전송을 위해서는 QoS의 제공이 중요하다. 애드혹 네트워크 환경에서 널리 사용되는 AODV 라우팅 프로토콜은 소스 노드에서 목적지 노드까지의 홉 수가 가장 적은 경로를 선택하는 알고리즘으로 동작 원리가 단순한 반면, 홉 수 외 다른 것은 고려하지 않기 때문에 QoS 제공에는 적합하지 않다. 본 논문에서는 이러한 점을 보완하기 위해 각 링크의 채널 상태를 고려한 AODV 알고리즘을 제안하고자 한다. 제안하는 알고리즘은 각 링크의 채널 상태를 반영하는 전송 성공률과 이에 따른 재전송 횟수를 계산하여 이를 홉 수에 반영하였다. 제안한 알고리즘은 링크 상태를 홉 수에 반영함으로써 기존의 AODV 알고리즘을 크게 변경시키지 않고 효율적으로 QoS 제공할 수 있다는 장점이 있다.
클러스터와 같은 네트워크 컴퓨팅 환경에서는 신속하고 신뢰성이 보장되는 데이타 전송이 요구된다. 일반적으로 신뢰성을 보장하기 위해서 사용되는 전송 프로토콜은 TCP이다. TCP는 신뢰성을 보장하기 위해서 혼잡 제어, 흐름 제어, 재전송 둥을 수행한다. 본 논문은 클러스터의 하부 네트워크로서 많이 사용되는 Myrinet을 분석한 결과, 네트워크 혼잡으로 인한 패킷 손실이 Myrinet에서는 발생하지 않음을 새롭게 보인다. 또한 Myrinet에서는 패킷의 순서 뒤바뀜과 손실이 발생하지 않음을 확인한다. 따라서 TCP의 혼잡 제어, 패킷 순서화, 재전송 등과 같은 신뢰성을 위한 기법들은 불필요한 오버헤드를 발생시킨다. 본 논문은 Myrinet에서 신뢰성을 보장하기 위한 최소한의 기능이 흐름 제어임을 보이고, TCP보다 오버헤드가 적은 UDP에 흐름 제어만을 구현한 RUM(Reliable UDP on Myrinet)을 제안한다. 성능 측정결과, RUM은 신뢰성을 보장함과 동시에, TCP보다 최대 45% 높은 처리량을 보이며 UDP와 비슷한 낮은 단방향 지연시간을 가짐을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.