• Title/Summary/Keyword: retraction

Search Result 493, Processing Time 0.027 seconds

Osseous outgrowth on the buccal maxilla associated with piezosurgery-assisted en-masse retraction: A case series

  • Tuncer, Nilufer Irem;Arman-Ozcirpici, Ayca;Oduncuoglu, Bahar Fusun;Kantarci, Alpdogan
    • The korean journal of orthodontics
    • /
    • v.48 no.1
    • /
    • pp.57-62
    • /
    • 2018
  • Piezoelectric surgery is a novel surgical approach used in orthodontic treatment for rapid tooth movement. This paper presents a case series wherein osseous outgrowths were observed in response to piezosurgery-assisted en-masse retraction. Sixteen patients requiring upper premolar extractions were treated with miniscrew-supported en-masse retraction and received minimally invasive decortication via piezosurgery. Computed tomography (CT) of the maxillary anterior region was performed to investigate the nature of the outgrowths. In 8 of the 16 patients, hemispheric or disc-shaped osseous outgrowths were observed on the sites where piezosurgery was performed during retraction. CT images revealed that these outgrowths were alveolar bone. This case series presents a previously unreported osseous response to piezosurgery-assisted tooth movement during orthodontic treatment. The response is mostly transient and is observed in 50% of the treated patients, suggesting a bone turnover that can be assessed clinically and radiographically.

The effectiveness of corticotomy and piezocision on canine retraction: A systematic review

  • Viwattanatipa, Nita;Charnchairerk, Satadarun
    • The korean journal of orthodontics
    • /
    • v.48 no.3
    • /
    • pp.200-211
    • /
    • 2018
  • The aim of this systematic review was to evaluate the effectiveness and complications of corticotomy and piezocision in canine retraction. Five electronic databases (PubMed, SCOPUS, Web of Science, Embase, and CENTRAL) were searched for articles published up to July 2017. The databases were searched for randomized control trials (RCTs), with a split-mouth design, using either corticotomy or piezocision. The primary outcome reported for canine retraction was either the amount of tooth movement, rate of tooth movement, or treatment time. The secondary outcome was complications. The selection process was based on the PRISMA guidelines. A risk of bias assessment was also performed. Our search retrieved 530 abstracts. However, only five RCTs were finally included. Corticotomy showed a more significant (i.e., 2 to 4 times faster) increase in the rate of tooth movement than did the conventional method. For piezocision, both accumulative tooth movement and rate of tooth movement were twice faster than those of the conventional method. Corticotomy (with a flap design avoiding marginal bone incision) or flapless piezocision procedures were not detrimental to periodontal health. Nevertheless, piezocision resulted in higher levels of patient satisfaction. The main limitation of this study was the limited number of primary research publications on both techniques. For canine retraction into the immediate premolar extraction site, the rate of canine movement after piezocision was almost comparable to that of corticotomy with only buccal flap elevation.

Effects of bodily retraction of mandibular incisors versus mandibular setback surgery on pharyngeal airway space: A comparative study

  • Keum, Byeong-Tak;Choi, Sung-Hwan;Choi, Yoon Jeong;Baik, Hyoung-Seon;Lee, Kee-Joon
    • The korean journal of orthodontics
    • /
    • v.47 no.6
    • /
    • pp.344-352
    • /
    • 2017
  • Objective: The purpose of this study was to compare the changes induced in the pharyngeal airway space by orthodontic treatment with bodily retraction of the mandibular incisors and mandibular setback surgery without extraction. Methods: This retrospective study included 63 adult patients (32 men and 31 women). Thirty-three patients who had been treated via four-bicuspid extraction and bodily retraction of the mandibular incisors (incisor retraction, IR group) were compared with 30 patients who had been treated via mandibular setback surgery (MS group) without extraction. Lateral cephalograms were acquired and analyzed before (T1) and after treatment (T2). Results: The superior pharyngeal airway space did not change significantly in either group during treatment. The middle pharyngeal airway space decreased by $1.15{\pm}1.17mm$ and $1.25{\pm}1.35mm$ after treatment in the IR and MS groups, respectively, and the decrease was comparable between the two groups. In the MS group, the inferior pharyngeal airway space (E-IPW) decreased by $0.88{\pm}1.67mm$ after treatment (p < 0.01). The E-IPW was larger in the MS group than in IR group at T1, but it did not differ significantly between the two groups at T2. No significant correlation was observed between changes in the pharyngeal airway space and the skeletal and dental variables in each group. Conclusions: The middle pharyngeal airway space decreased because of the posterior displacement of the mandibular incisors and/or the mandibular body. The E-IPW decreased only in the MS group because of the posterior displacement of only the mandibular body.

Finite element analysis of maxillary incisor displacement during en-masse retraction according to orthodontic mini-implant position

  • Song, Jae-Won;Lim, Joong-Ki;Lee, Kee-Joon;Sung, Sang-Jin;Chun, Youn-Sic;Mo, Sung-Seo
    • The korean journal of orthodontics
    • /
    • v.46 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • Objective: Orthodontic mini-implants (OMI) generate various horizontal and vertical force vectors and moments according to their insertion positions. This study aimed to help select ideal biomechanics during maxillary incisor retraction by varying the length in the anterior retraction hook (ARH) and OMI position. Methods: Two extraction models were constructed to analyze the three-dimentional finite element: a first premolar extraction model (Model 1, M1) and a residual 1-mm space post-extraction model (Model 2, M2). The OMI position was set at a height of 8 mm from the arch wire between the second maxillary premolar and the first molar (low OMI traction) or at a 12-mm height in the mesial second maxillary premolar (high OMI traction). Retraction force vectors of 200 g from the ARH (-1, +1, +3, and +6 mm) at low or high OMI traction were resolved into X-, Y-, and Z-axis components. Results: In M1 (low and high OMI traction) and M2 (low OMI traction), the maxillary incisor tip was extruded, but the apex was intruded, and the occlusal plane was rotated clockwise. Significant intrusion and counter-clockwise rotation in the occlusal plane were observed under high OMI traction and -1 mm ARH in M2. Conclusions: This study observed orthodontic tooth movement according to the OMI position and ARH height, and M2 under high OMI traction with short ARH showed retraction with maxillary incisor intrusion.

Comparison of treatment effects between four premolar extraction and total arch distalization using the modified C-palatal plate

  • Jo, Sung Youn;Bayome, Mohamed;Park, Justyn;Lim, Hee Jin;Kook, Yoon-Ah;Han, Seong Ho
    • The korean journal of orthodontics
    • /
    • v.48 no.4
    • /
    • pp.224-235
    • /
    • 2018
  • Objective: The purpose of this study was to compare the skeletal, dental, and soft-tissue treatment effects of nonextraction therapy using the modified C-palatal plate (MCPP) to those of premolar extraction (PE) treatment in adult patients with Class II malocclusion. Methods: Pretreatment and posttreatment lateral cephalographs of 40 adult patients with Class II malocclusion were retrospectively analyzed. The MCPP group comprised 20 patients treated with total arch distalization of the maxillary arch while the PE group comprised 20 patients treated with four PE. Fifty-eight linear and angular measurements were analyzed to assess the changes before and after treatment. Descriptive statistics, paired t-test, and multivariate analysis of variance were performed to evaluate the treatment effects within and between the two groups. Results: The MCPP group presented 3.4 mm of retraction, 1.0 mm of extrusion, and $7.3^{\circ}$ lingual inclination of the maxillary central incisor. In comparison, the PE group displayed greater amount of maxillary central incisor retraction and retroclination, mandibular incisor retraction, and upper lip retraction (5.3 mm, $14.8^{\circ}$, 5.1 mm, and 2.0 mm, respectively; p < 0.001 for all). In addition, the MCPP group showed 4.0 mm of distalization and 1.3 mm of intrusion with $2.9^{\circ}$ distal tipping of the maxillary first molars. Conclusions: These findings suggest the MCPP is an effective distalization appliance in the maxillary arch. The amount of incisor retraction, however, was significantly higher in the PE group. Therefore, four PE may be recommended when greater improvement of incisor position and soft-tissue profile is required.