• Title/Summary/Keyword: retina model

Search Result 62, Processing Time 0.027 seconds

Analysis of Neuronal Activities of Retinal Ganglion Cells of Degenerated Retina Evoked by Electrical Pulse Stimulation (전기자극펄스에 대한 변성망막 신경절세포의 응답특성 분석)

  • Ryu, Sang-Baek;Lee, Jong-Seung;Ye, Jang-Hee;Goo, Yong-Sook;Kim, Chi-Hyun;Kim, Kyung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • For the reliable transmission of meaningful visual information using prosthetic electrical stimulation, it is required to develop an effective stimulation strategy for the generation of electrical pulse trains based on input visual information. The characteristics of neuronal activities of retinal ganglion cells (RGCs) evoked by electrical stimulation should be understood for this purpose. In this study, for the development of an optimal stimulation strategy for visual prosthesis, we analyzed the neuronal responses of RGCs in rd1 mouse, photoreceptor-degenerated retina of animal model of retinal diseases (retinitis pigmentosa). Based on the in-vitro model of epiretinal prosthesis which consists of planar multielectrode array (MEA) and retinal patch, we recorded and analyzed multiunit RGC activities evoked by amplitude-modulated electrical pulse trains. Two modes of responses were observed. Short-latency responses occurring at 3 ms after the stimulation were estimated to be from direct stimulation of RGCs. Long-latency responses were also observed mainly at 2 - 100 ms after stimulation and showed rhythmic firing with same frequency as the oscillatory background field potential. The long-latency responses could be modulated by pulse amplitude and duration. From the results, we expect that optimal stimulation conditions such as pulse amplitude and pulse duration can be determined for the successful transmission of visual information by electrical stimulation.

The Change of Taurine Transport in Variable Stress States through the Inner Blood-Retinal Barrier using In Vitro Model

  • Kang, Young-Sook;Lee, Na-Young;Chung, Yeon-Yee
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • Taurine is the most abundant free amino acid in the retina and transported into retina via taurine transporter (TauT) at the inner blood-retinal barrier (iBRB). In the present study, we investigated whether the taurine transport at the iBRB is regulated by oxidative stress or disease-like state in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB) used as an in vitro model of iBRB. First, [$^3H$]taurine uptake and efflux by TR-iBRB were regulated in the presence of extracellular $Ca^{2+}$. [$^3H$]Taurine uptake was inhibited and efflux was enhanced under $Ca^{2+}$ free condition in the cells. In addition, oxidative stress inducing agents such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$), lipopolysaccharide (LPS), diethyl maleate (DEM) and glutamate increased [$^3H$]taurine uptake and decreased [$^3H$]taurine efflux in TR-iBRB cells. Whereas, 3-morpholinosydnonimine (SIN-1), which is known to NO donor decreased [$^3H$]taurine uptake. Lastly, TR-iBRB cells exposed to high glucose (25 mM) medium and the [$^3H$]taurine uptake was reduced about 20% at the condition. Also, [$^3H$]taurine uptake was decreased by cytochalasin B, which is known to glucose transport inhibitor. In conclusion, taurine transport in TR-iBRB cells is regulated diversely at extracellular $Ca^{2+}$, oxidative stress and hyperglycemic condition. It suggested that taurine would play a role as a retinal protector in diverse disease states.

EVALUATION METHOD OF VARIOUS MODULATED IMAGES BY TWO DIMENSIONAL VISUAL MODEL

  • Junji-Kawaski;Hiroshi-Hayashi;Akira-Hayashi;Makoto-Sato;Taizo-Iljima
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.35.2-42
    • /
    • 1999
  • When we see a binary black and white image, it appears. to our visual sense, to become clearer because of a pseudo halftone. This is because when we don't notice of all the details of the image, instead we see from a more global standpoint. We presented a theory and experimental results for layered model which extended external world, retina and brain of the two dimensional visual model. This paper propose the objective evaluation to coincide with the subjective evaluation of the human in ordered to evaluate the relative merits of the various modulation method. We obtain experimentally the restored images and the measure of approximation of the density four division and ordered dither method. The measure of approximation present s the objective evaluation scale to coincide with the subjective evaluation of the two modulation images.

Lens Design of the Eyepiece Combined with the Accommodation-dependent Navarro Eye at an On-axis Point

  • Choi, Ka-Ul;Song, Seok-Ho;Kim, Sang-Gee
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.55-62
    • /
    • 2010
  • We introduce a new method for lens design that combines an eyepiece with the finite model eye, to make a corrected version of the accommodation-dependent Navarro eye. The optical system that we designed, which includes a human eye, takes into account the aberration of the eye and increases the performance of the image in the retina. In the design results, for the optimized eyepiece combined with the corrected Navarro eye, visual acuity is 1.40. Compared with the existing method of eyepiece design using inverse ray tracing with the corrected Navarro eye, MTF value was recorded as 0.079 to 0.283 at 160 lp/mm and visual performance was improved.

Irradiant Energy into an Eye from a Flash Light (섬광에 의하여 사람 눈에 입사되는 광 에너지)

  • Park, Seung-Man;Han, Seungoh
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1225-1230
    • /
    • 2016
  • Since a flash light produces enormous amount of photon energy in short time, not only electro-optic and infrared(EO/IR) systems utilized for Intelligence Surveillance Target Acquisition and reconnaissance(ISTAR) activities but also the people of a combat field can be severely influenced by a high flash light bursting in front of them. The people who bumped into a flash could not escape such enormous amount of photon energy, resulting in being blind temporarily or even permanently. In order to investigate the effect of a high flash source on a human eye, it is essential to know how much photon energy be incident into an eye from the flash source. In this paper, the model of irradiated photon energy to individuals from some flashes is proposed. The proposed irradiated photon energy per unit area of retina is based on taking the situation to be modeled as a simple EO system in front of a flash light. The validity of proposed model was proved by the application of the model to human on the surface of the earth with the well known light source, the Sun. The model of this study can be utilized to simulate the retinal intensity and energy of a flash for various conditions such as the illumination levels, the distance from a flash busting site, luminous intensity and time of a flash.

Mind Bomb-Binding Partner RanBP9 Plays a Contributory Role in Retinal Development

  • Yoo, Kyeong-Won;Thiruvarangan, Maivannan;Jeong, Yun-Mi;Lee, Mi-Sun;Maddirevula, Sateesh;Rhee, Myungchull;Bae, Young-Ki;Kim, Hyung-Goo;Kim, Cheol-Hee
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.271-279
    • /
    • 2017
  • Ran-binding protein family member, RanBP9 has been reported in various basic cellular mechanisms and neuropathological conditions including schizophrenia. Previous studies have reported that RanBP9 is highly expressed in the mammalian brain and retina; however, the role of RanBP9 in retinal development is largely unknown. Here, we present the novel and regulatory roles of RanBP9 in retinal development of a vertebrate animal model, zebrafish. Zebrafish embryos exhibited abundant expression of ranbp9 in developing brain tissues as well as in the developing retina. Yeast two-hybrid screening demonstrated the interaction of RanBP9 with Mind bomb, a component of Notch signaling involved in both neurogenesis and neural disease autism. The interaction is further substantiated by co-localization studies in cultured cells. Knockdown of ranbp9 resulted in retinal dysplasia with defective proliferation of retinal cells, downregulation of neuronal differentiation marker huC, elevation of neural proliferation marker her4, and alteration of cell cycle marker p57kip2. Expression of the $M{\ddot{u}}ller$ glial cell marker glutamine synthase was also affected in knockdown morphants. Our results suggest that Mind bomb-binding partner RanBP9 plays a role during retinal cell development of zebrafish embryogenesis.

Multiple consecutive-biphasic pulse stimulation improves spatially localized firing of retinal ganglion cells in the degenerate retina

  • Jungryul Ahn;Yongseok Yoo;Yong Sook Goo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.6
    • /
    • pp.541-553
    • /
    • 2023
  • Retinal prostheses have shown some clinical success in restoring vision in patients with retinitis pigmentosa. However, the post-implantation visual acuity does not exceed that of legal blindness. The reason for the poor visual acuity might be that (1) degenerate retinal ganglion cells (RGCs) are less responsive to electrical stimulation than normal RGCs, and (2) electrically-evoked RGC spikes show a more widespread not focal response. The single-biphasic pulse electrical stimulation, commonly used in artificial vision, has limitations in addressing these issues. In this study, we propose the benefit of multiple consecutive-biphasic pulse stimulation. We used C57BL/6J mice and C3H/HeJ (rd1) mice for the normal retina and retinal degeneration model. An 8 × 8 multi-electrode array was used to record electrically-evoked RGC spikes. We compared RGC responses when increasing the amplitude of a single biphasic pulse versus increasing the number of consecutive biphasic pulses at the same stimulus charge. Increasing the amplitude of a single biphasic pulse induced more RGC spike firing while the spatial resolution of RGC populations decreased. For multiple consecutive-biphasic pulse stimulation, RGC firing increased as the number of pulses increased, and the spatial resolution of RGC populations was well preserved even up to 5 pulses. Multiple consecutive-biphasic pulse stimulation using two or three pulses in degenerate retinas induced as much RGC spike firing as in normal retinas. These findings suggest that the newly proposed multiple consecutive-biphasic pulse stimulation can improve the visual acuity in prosthesis-implanted patients.

Effect of n-3 Fatty Acid Deficiency on Fatty Acid Composition in Brain, Retina and Liver Using a Novel Artificial Rearing System (인공 사육 동물 모델 시스템을 이용한 n-3 지방산 결핍이 쥐의 뇌, 망막, 간의 지방산 조성에 미치는 영향)

  • Lim, Sun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.4
    • /
    • pp.466-475
    • /
    • 2005
  • Docosahexaenoic acid (22:6n-3, DHA) is highly enriched in membrane of brain and retina, and plays an important role in maintaining an optimal function of the central nervous system. We investigated the effect of n-3 fatty acid deficiency on rat brain, retina and liver fatty acyl composition at two different ages (3 wks and 15 wks) under DHA deficient condition. Rat pups born to dams fed a diet with $3.1\%$ of total fatty acids as $\alpha-linolenic$ acid (LNA) were fed using an artificial rearing system either an n-3 deficient (n-3 Def) or n-3 adequate (n-3 Adq) diet. Both diets contained $17.1\%$ linoleic acid (LA) but the n-3 Adq diet also contained $3.1\%$ LNA. Rats consuming the n-3 Def diet showed a lower brain $(50\%\;in\;13\;wks\;and\;70\%\;in\;15\;wks,\;p<0.05)$ and retinal $(50\%\;in\;13\;wks\;and\;63\%\;in\;15\;wks,\;p<0.05)$ DHA than those on the n-3 Adq diet, which was largely compensated for by an increase in docosapentaenoic acid (22:5n-6, DPAn-6). In the liver of the n-3 Def group, the percentage of DHA decreased by $97\%$ at 3 wks of age with an apparent increase in DPAn-6 relative to the n-3 Adq group (p<0.05), while there was a $65\%$ lower liver DHA in n-3 Def group at 15 wks of age than the n-3 Adq group (p<0.05). Liver arachidonic acid (20:4n-6, AA) was increased at 3 wks of age but decreased at 15 wks of age in the n-3 Def group compared with n-3 Adq group (p<0.05). In conclusion, the replacement of DHA by DPAn-6 in brain and retina fatty acid composition may be related to the suboptimal function in spatial learning, memory and visual acuity. This artificial rearing method presents a first generation model for n-3 deficiency that is similar to the case of human nutrition that commonly employed two generation model.

Implementation of saliency map model using independent component analysis (독립성분해석을 이용한 Saliency map 모델 구현)

  • Sohn, Jun-Il;Lee, Min-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.286-291
    • /
    • 2001
  • We propose a new saliency map model for selecting an attended location in an arbitrary visual scene, which is one of the most important characteristics of human vision system. In selecting an attended location, an edge information can be considered as a feature basis to construct the saliency map. Edge filters are obtained from the independent component analysis(ICA) that is the best way to find independent edges in natural gray scenes. In order to reflect the non-uniform density in our retina, we use a multi-scaled pyramid input image instead of using an original input image. Computer simulation results show that the proposed saliency map model with multi-scale property successfully generates the plausible attended locations.

  • PDF

Fundamental Function Design of Real-Time Unmanned Monitoring System Applying YOLOv5s on NVIDIA TX2TM AI Edge Computing Platform

  • LEE, SI HYUN
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.22-29
    • /
    • 2022
  • In this paper, for the purpose of designing an real-time unmanned monitoring system, the YOLOv5s (small) object detection model was applied on the NVIDIA TX2TM AI (Artificial Intelligence) edge computing platform in order to design the fundamental function of an unmanned monitoring system that can detect objects in real time. YOLOv5s was applied to the our real-time unmanned monitoring system based on the performance evaluation of object detection algorithms (for example, R-CNN, SSD, RetinaNet, and YOLOv5). In addition, the performance of the four YOLOv5 models (small, medium, large, and xlarge) was compared and evaluated. Furthermore, based on these results, the YOLOv5s model suitable for the design purpose of this paper was ported to the NVIDIA TX2TM AI edge computing system and it was confirmed that it operates normally. The real-time unmanned monitoring system designed as a result of the research can be applied to various application fields such as an security or monitoring system. Future research is to apply NMS (Non-Maximum Suppression) modification, model reconstruction, and parallel processing programming techniques using CUDA (Compute Unified Device Architecture) for the improvement of object detection speed and performance.