• 제목/요약/키워드: retention ratio of tensile strength

검색결과 11건 처리시간 0.019초

지오튜브공법의 실용화방안에 관한 연구 (Development of Geotube for Practical Use)

  • 신은철;오영인;이희재
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.504-511
    • /
    • 2000
  • Geotube is a tube made of permeable but soil-tight geotextile, hydraulically filled with soil include dredged sand and mud, which has been successfully applied in hydraulic and coastal engineering projects. This method is getting popular and used a lot in the advanced countries of the world because of economical, useful, and enable to store and isolate contaminated materials as obtained by harbor dredging. Laboratory and pilot scale in-situ tests were performed to determine the design methodology and construction procedures. From the results of laboratory and in-situ model tests, the retention ratio of solid particle is minimum 86% and minimum permeability and tensile strength of geotextile is ${\alpha}$${\times}$10$\^$-2/ and 20 t/m, respectively. Also, based on the environmental model test results, it can be concluded that this method does meet the Korean EPA standards.

  • PDF

Physical and Mechanical Properties of Light Red Meranti Treated with Boron Preservatives

  • Man Djun LEE;Ridge Wei Cheong TANG;Zeno MICHAEL;Miqdad KHAIRULMAINI;Azmi ROSLAN;Ahmad Faidzal KHODORI;Hazim SHARUDIN;Pui San LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권2호
    • /
    • pp.157-174
    • /
    • 2024
  • This study investigates the influence of varying concentrations of boric acid (BA) preservative on the physical and mechanical properties of light red meranti (LRM) found in Sarawak. LRM or Shorea leprosula samples were treated with various concentrations of BA via the dip diffusion method using American Society for Testing and Materials (ASTM) standards. The physical property, particularly the retention rate and mechanical properties, bending strength, modulus of elasticity (MOE), tensile and compression strength parallel to grain of impregnated and control samples were tested to determine the effects of BA preservative. The retention rate was found to increase with increasing BA concentration and higher surface area to volume ratio. The mechanical properties in terms of the MOE and tensile strength parallel to grain were found to be greater than those of the control samples, whereas the bending strength and tensile strength parallel to grain were lower. Amongst the results, only the retention rate and MOE showed significant interaction effects at 5% level of significance between all factors tested (samples size and BA concentration for retention rate and BA concentration for MOE).

사출 성형 시 수지온도와 웰드품질과의 관계 (Realation of Injection Temperature and Weld-quality in Injection Molding)

  • 노건철;이규호;장민규;정영득
    • Design & Manufacturing
    • /
    • 제9권1호
    • /
    • pp.27-30
    • /
    • 2015
  • The injection molding is used in more than 70% of total production of plastic products. Weld line in injection molded part is one of the defects in injection molding process. Weld line deteriorates not only appearance quality but also mechanical property. In this study, tensile strength about material such as ABS, PP, PA and PS was tested. as the results, the first result appears that weld's strength retention ratio's are 0.90, 0.84, 0.85, 0.76 and the second result apeears that weld depth decrease as processing temperature increased.

  • PDF

섬유 혼합토의 공학적 특성 (Engineering Properties of Fiber Mixed Soil)

  • 장병욱;박영곤
    • 한국농공학회지
    • /
    • 제44권1호
    • /
    • pp.116-124
    • /
    • 2002
  • Natural resources fur the construction materials such as good soil, sand, and coarse aggregates have been encountered to be short due to excessive use by human. Even though some soil has been found to be unsuitable for construction materials, soil with reinforcement can naturally be an answer to these alternatives. According to recently published papers on fiber mixed soil, fiber mixed with soil can improve shear strength, compressive strength and post-peak load strength retention. In this study, a series of tests were performed to clarify the characteristics of fiber mixed soil and to give basic data for design and construction and their engineering properties, that is, unconfined compressive strength, splitting tensile strength, shear strength, crack by drying, freeze-thaw, creep and Poisson\`s ratio, were investigated and analyzed. It has been shown that fiber mixed soil is one of good alternatives fur the civil and building construction materials.

수질오염 방지를 위한 준설매립공법에 관한 연구 (Dredging and Reclamation Technology for Prevention of Water Pollution)

  • 신은철;오영인;이학주
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.41-45
    • /
    • 2000
  • Geotube is made of permeable but soil-tight geotextile, hydraulically filled with soil include dredged sand and mud, which has been successfully applied in hydraulic and coastal engineering projects. Ceotube method is getting popular and being used a lot in many countries of the world because of the simplicity of the placement and construction, cost effectiveness and minimum impact on the environment, and enable to store & isolate contaminated materials as obtained by harbor dredging. Laboratory tests and field construction were performed to determine the design methodology and construction procedures. From the results of laboratory and field construction, the retention ratio of solid particle is a minimum 86%. The minimum permeability and the tensile strength of geotextile are $\alpha$ x 10$^{-4}$ cm/sec and 20t/m, respectively Also, based on the environmental test results, it can be concluded that this method does meet the Korean EPA standards.

  • PDF

복합형 지오텍스타일의 적용환경에 대한 저항성 평가 (Assessment of Resistance to Application Environment of Geotextile Composites)

  • 전한용;류원석;김한도;정진교;조봉균
    • 한국지반신소재학회논문집
    • /
    • 제2권3호
    • /
    • pp.25-38
    • /
    • 2003
  • 적용환경에 대한 저항성을 향상시키기 위하여 자외선 안정제로 카본블랙을 첨가한 재활용 폴리에스테르 지오텍스타일과 폴리프로필렌 지오텍스타일을 니들펀칭법에 의해 복합형 지오텍스타일을 제조하였다. 역학적 특성, 자외선 저항성 및 화학적 안정성을 측정하였다. 폴리프로필렌 지오텍스타일의 인장강도 보유율은 자외선 노출조건에 따라 50% 정도 감소하였지만 복합형 지오텍스타일은 약간의 감소를 나타내었다. 재생 폴리에스테르 지오텍스타일을 많이 사용할수록 자외선에 대한 안정성이 향상되었다. 화학적 안정성의 경우, 다양한 화학조건에서 복합형 지오텍스타일의 인장강도 변화는 -20~+10% 정도이었다.

  • PDF

Diphenyl ethanolamidophosphate의 합성과 면섬유에 대한 방염성 (The Synthesis of Diphenyl ethanolamidophosphate (DPEAP) and the Flame Retardancy of Cotton Fabric)

  • Huh, Man Woo;Yoon, Jong Ho;Cho, Yong Suk;Kim, Young Suk;Lim, Hak Sang
    • 한국염색가공학회지
    • /
    • 제8권2호
    • /
    • pp.25-34
    • /
    • 1996
  • Diphenyl ethanolamidophosphate(DPEAD) was synthesized for the purpose of developing a new flame retardant for cotton fabric. As the intermediate material was used diphenyl chlorophosphate(DPCP) and it was synthesized by using phosphorus oxychloride and phenol as the starting materials. The final product DPEAP was obtained by the reaction of DPCP and ethanolamine. The flame retardancy of cotton fabrics treated by DPEAP through pad-dry-cure(PDC) process was examined at various conditions. The physical property change of the DPEAP treated cotton fabrics were investigated by examining the drape stiffness, the wrinkle recovery, and the tensile strength. The results are summarized as follows: (1) DPEAP has shown excellent flame retardancy on cotton fabrics in comparison to other flame retardants for cotton fabrics available commercially. (2) The optimal condition for PDC process found was that the curing temperature was 16$0^{\circ}C$, the DPEAP concentration was 10%, the catalyst $({NH_{4})_{2}HPO_{4}$ concentration was 7.0%, and the fixing agent hexamethylol melamine (HMM)/DPEAP weight ratio was 1/8. (3) The wrinkle recovery of the processed fabrics increased with increasing DPEAP concentration. (4) The drape stiffness of the cotton fabrics treated by DPEAP have shown essentially no change until increasing DPEAP concentration to 15 %, however DPEAP concentration exceeds 20% the drape stiffness increased drastically with increasing DPEAP concentration. When DPEAP concentration is kept constant the drape stiffness increased with increasing $({NH_{4})_{2}HPO_{4}$ concentration and HMM/DPEAP weight ratio. (5) The tensile strength of the processed fabrics was lower than that of untreated fabrics, but the tensile strength retention increased with increasing DPEAP concentration.

  • PDF

천연 황색안료 염색한지의 패션소재 적용 가능성 평가에 관한 연구 (Properties of Hanji with natural pigment dyeing for use as a fashion material)

  • 김기훈;임현아
    • 복식문화연구
    • /
    • 제22권2호
    • /
    • pp.339-345
    • /
    • 2014
  • This study analyzes and compares Hanji made with loess to Hanji made with kaolin, two yellow-based inorganic pigments, in terms of its physical properties, optical properties, and color fastness to light with the aim of using it as a fashion material. Hanji made by adding inorganic pigments showed an approximately 20% retention ratio on average. This figure was similar to those of loess and kaolin. Physical properties were analyzed, with the following results. A higher amount of additives lowered the apparent density and increased thickness and bulk. In general, inorganic pigment-added Hanji had lower tensile strength, bursting strength, and folding endurance compared to non-additive Hanji. The analysis of optical properties showed a lower brightness index for Hanji made with inorganic pigments compared to non-additive Hanji. When comparing the two inorganic pigments, the brightness of Hanji made with kaolin was higher. Regarding color fastness to light, loess showed level 4 and kaolin showed level 5 when 25% inorganic pigments on pulp were added to Hanji. Thus, Hanji made by adding inorganic pigments during the manufacturing process may perform well as materials for fashion because the additives enhanced both the color fastness to light and the bulk while maintaining the strength. In addition, Hanji dyed with inorganic pigments may have the potential to serve as materials for the fashion industry while still retaining the characteristics of Hanji.

면/폴리에스터 혼방직물의 생분해성 평가 (Biodegradation of Cotton/Polyester Blends)

  • 이승현;박정희;임승순
    • 한국의류학회지
    • /
    • 제29권2호
    • /
    • pp.347-355
    • /
    • 2005
  • Biodegradability of cotton/polyester blend fabric was investigated employing activated sluge test, soil burial test and enzyme hydrolysis. Surface changes of the degraded sample were observed through a microscopy. Changes in X-ray diffraction patterns and crystallinity were examined using X-ray diffractometer. Experimental results revealed that biodegradability of cotton/polyester blend fabric was proportional to the blending ratio of cotton, not showing any synergy effect. Polyester 100% hardly degraded in this study. Through the comparison of the experimental method it was shown that the biodegradabilities determined from activated sludge test and enzymatic hydrolysis except soil burial test were linearly related to the blending ratio of cotton in the blent fabrics. It is probably because the biodegradability determined from the retention of tensile strength of fabrics buried in soil was affected by the stress distribution of polyesters throughout the fabric. From the microscopic observations it was revealed that fungi were grown on the fabric surface and the colors turned yellow, brown and black. X-ray diffraction patterns showed that the heights of crystalline peak coming from cotton part in blend fabrics decreased whereas those coming from polyester part increased comperatively as time passed by. Crystallinities of cotton 100% fabric increased slightly at the begining and then decreased continuously.

면섬유와 케나프섬유를 혼방한 직물과 편성물에 대한 워싱 처리 효과 (Washing Treatment Effects on Cotton and Kenaf Blend Fabrics)

  • 이혜자;유혜자;임희정
    • 한국의류학회지
    • /
    • 제34권3호
    • /
    • pp.448-458
    • /
    • 2010
  • Kenaf has a rigid and rough touch that inhibits the use of it as a textile material; therefore, this study developed a novel textile material using kenaf. Kenaf and cotton were blended in the ratio of 3:7 and manufactured as 20' spun yarn that was compared to 20's spun yarn made of 100% cotton. Both kenaf/cotton-blended and 100% cotton spun yarn were constructed as plain woven and knitted fabrics. Four kinds of fabrics were prepared as follows. Plain kenaf/cotton-woven fabrics, plain cotton-woven fabrics, kenaf/cotton jersey, and cotton jersey. A cellulase washing process was carried out to reduce the character of kenaf/cotton-blended fabrics, rigid, and rough touch. All fabrics were pretreated with NaOH. NaOH at the concentrations of 0, 0.25, 1.25, and 2.25mol/L, and cellulase at concentrations of 0, 1, 3 and 5g/L were used since the pretreatment of NaOH has a higher efficiency of weight loss than $Na_2CO_3,\;K2CO_3$ and Triton X-100. The ratio of weight loss, tensile strength, stiffness, drape property, and surface appearance were measured in order to evaluate the efficiency of the washing treatment on fabrics. Kenaf/cotton-blended fabrics exhibited more rigid and rough features than cotton fabrics. A cotton jersey showed significant differences in the degree of stiffness and drape properties. When all fabrics were treated with 1.25mol/L of NaOH and 3g/L of cellulase, kenaf/cotton-blended fabrics showed a higher retention ratio of tensile strength than cotton fabrics after washing despite the increased weight l08s of kenaf-blended fabrics compared to cotton fabrics. The ratio of weight loss for all fabrics was well correlated with flexibility. The washing treatment process made woven fabrics more flexible than knitted fabrics, because the stiffness of woven fabrics made the rubbing actions stronger. Kenaf/cotton-blended fabrics showed a significantly higher ratio of weight loss and more reduction in stiffness than cotton fabrics after the washing treatment. This might be due to the lack of cohesiveness and easy elimination from fabrics. The drape property of kenaf-blended fabrics was superior to cotton fabrics.