• Title/Summary/Keyword: retained stability

Search Result 200, Processing Time 0.021 seconds

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki;Ahmed, Hanan Mostafa;Naim, Nadia
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.332-339
    • /
    • 2010
  • The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.

3D FINITE ELEMENT ANALYSIS OF OVERDENTURE STABILITY AND STRESS DISTRIBUTION ON MANDIBULAR IMPLANT-RETAINED OVERDENTURE (하악 임플랜트 유지형 피개의치의 안정성과 하악골 응력분포에 대한 3차원 유한요소법적 연구)

  • Hong, Hae-Ryong;Choi, Dae-Gyun;Bak, Jin;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.633-643
    • /
    • 2007
  • Statement of problem: Recently there are on an increasing trend of using implants-especially in edentulous mandible of severly alveolar bone recessed. Purpose: The aim of this study was to analyze the displacement and stress distribution of various mandibular implant-retained overdenture models supported by two implants in interforaminal region under the occlusion scheme load. Material and method: FEA models were made by the 3D scanning of the edentulous mandibular dentiform. The three models were named as Model M1, M2, and M3 accord ing to the position of implants: M1, Lt. incisor area, M2, Canine area, and M3, 1st Premolar area. Inter-implant angulation model was named as M4. Conventional complete denture was named M5 and used as a control group. Ball implant and Gold matrice were used as a retentive anchors. The occlusion type loads were applied horizontally over each tooth. Results: 1. In mandibular implant retained overdenture Canine Protected Occlusion type load resulted in higher levels of stress to the implants and female matrices than other types of loads. 2. The overdenture model M1, with implants in lateral incisor areas resulted in lower stress concentration to the implants and female matrices than other models. 3. In mandibular implant retained overdenture the stresses of the implant and female matrice were lower in mesially inclined implant than these of parallel installed implant. Conclusion: Lateral incisor areas could be the best site for the implants in mandibular implant-retained overdenture. The mandibular implant retained overdenture models mentioned above showed to the lowest stress to the implants and female matrices.

Effect of Reverse Transformation Treatment on the Formation of Retained Austenite and Mechanical Properties of C-Mn TRIP Steels (C-Mn계 TRIP강의 잔류오스테나이트 생성과 기계적 성질에 미치는 역변태처리의 영향)

  • You J. S;Hong H;Lee O. Y;Jin K. G;Kim S. J
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.126-132
    • /
    • 2004
  • The high strength steel sheets has been widely used as the automobile parts to reduce the weight of a vehicle. The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The 0.15C-4Mn and 0.15C-6.5Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and air cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $645^{\circ}C$ for 12 hrs. was about 46vol.% in hot rolled 0.lC-6.5Mn steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The tendency of tensile strength to increase with increasing the holding temperature was due to the decrease of retained austenite after cooling from the higher temperature of $670 ^{\circ}C$. The maximum strength-ductility combination was about 4,250 kg/$\textrm{mm}^2$ㆍ% when the hot rolled 0.lC-6.5Mn steel was reversely transformed at $645^{\circ}C$ for 12 hrs.

Performance Evaluation of 100 % RAP Asphalt Mixtures using different types of Rapid-Setting Polymer-Modified Asphalt Emulsion for Spray Injection Application (속경성 바인더 유형에 따른 긴급보수용 스프레이 패칭 상온 재활용 아스팔트 혼합물(RAP)의 성능 평가)

  • Kim, Doo Yeol;Jeon, Ji Seong;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • PURPOSES : The purpose of this study was to determine the optimum mix design of the content of 100 % reclaimed asphalt pavement (RAP) for spray injection application with different binder types. METHODS : Literature review revealed that spray injection method is the one of the efficient and economical methods for repairing a small defective area on an asphalt pavement. The Rapid-Setting Polymer modified asphalt mixtures using two types of rapid setting polymers-asphalt emulsion and a quick setting polymer asphalt emulsion-were subjected to the following tests to determine optimum mix designs and for performance comparison: 1) Marshall stability test, 2) Retained stability test, 3) Wet track abrasion test, and 4) Dynamic stability test. RESULTS and CONCLUSIONS : Type A, B, and C emulsions were tested with different mix designs using RAP aggregates, to compare the performances and determine the optimum mix design. Performance of mixtures with Type A emulsion exceeded that of mixtures with Type B and C emulsion in all aspects. In particular, Type A binder demonstrated the highest performance for WTAT at low temperature. It demonstrated the practicality of using Type A mixture during the cold season. Furthers studies are to be performed to verify the optimum mix design for machine application. Differences in optimum mix designs for machine application and lab application will be corrected through field tests.

Immobilization of Thermomyces lanuginosus Xylanase on Aluminum Hydroxide Particles Through Adsorption: Characterization of Immobilized Enzyme

  • Jiang, Ying;Wu, Yue;Li, Huixin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2016-2023
    • /
    • 2015
  • Xylanase plays important roles in a broad range of industrial production as a biocatalyst, and its applications commonly require immobilization on supports to enhance its stability. Aluminum hydroxide, a carrier material with high surface area, has the advantages of simple and low-cost preparation and resistance to biodegradation, and can be potentially used as a proper support for xylanase immobilization. In this work, xylanase from Thermomyces lanuginosus was immobilized on two types of aluminum hydroxide particles (gibbsite and amorphous Al(OH)3) through adsorption, and the properties of the adsorbed enzymes were studied. Both particles had considerable adsorptive capacity and affinity for xylanase. Xylanase retained 75% and 64% of the original catalytic activities after adsorption to gibbsite and amorphous Al(OH)3. Both the adsorptions improved pH and thermal stability, lowered activation energy, and extended lifespan of the immobilized enzyme, as compared with the free enzyme. Xylanase adsorbed on gibbsite and amorphous Al(OH)3 retained 71% and 64% of its initial activity, respectively, after being recycled five times. These results indicated that aluminum hydroxides served as good supports for xylanase immobilization. Therefore, the adsorption of xylanase on aluminum hydroxide particles has promising potential for practical production.

Chemically Modified Sepharose as Support for the Immobilization of Cholesterol Oxidase

  • Yang, Hailin;Chen, Yi;Xin, Yu;Zhang, Ling;Zhang, Yuran;Wang, Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1212-1220
    • /
    • 2013
  • Because the cholesterol oxidase from Brevibacterium sp. M201008 was not as stable as the free enzyme form, it had been covalently immobilized onto chemically modified Sepharose particles via N-ethyl-N'-3-dimethylaminopropyl carbodiimide. The optimum immobilization conditions were determined, and the immobilized enzyme activity obtained was 12.01 U/g Sepharose-ethylenediamine. The immobilization of the enzyme was characterized by Fourier transform infrared spectroscopy. The immobilized enzyme exhibited the maximal activity at $35^{\circ}C$ and pH 7.5, which was unchanged compared with the free form. After being repeatedly used 20 times, the immobilized enzyme retained more than 40.43% of its original activity. The immobilized enzyme showed better operational stability, including wider thermal and pH ranges, and retained 62.87% activity after 20 days of storage at $4^{\circ}C$, which was longer than the free enzyme.

A New Technique for Fabrication of Bonded Linqual Retainer (Bonded Linqual Retainer의 최신 제작기술)

  • Yu, Chin-Ho
    • Journal of Technologic Dentistry
    • /
    • v.20 no.1
    • /
    • pp.91-98
    • /
    • 1998
  • Bonded lingual retained are divided into two common types; preformed retainers with attached mash pads, and those that are custom fabricated from standard round ir multi-standed wire. The clinician may encounter problems in the bonding process of both types of retainers because of an inability to accurtely place and temporarily stability the wire in the same position as it was adapted an a guide model. Because of these problems, a new fabrication technique of bonded lingual retainers which increase their accuracy and ease of placement and also increased their tretention was suggested by the author. Using a current model as a guide, this bonded lingual retainer was fabricated from $.028"{\sim}.032"$ standard round wire. The wire was formed with pliers for idel adapation to the lingual surfaces of the involved teeth. Right angle bends were placed in the retainer wire ends and custom "composite" bonding pads were added to the ends of the retainer wire. This bonded lingual retainer with custom "composite" bonding pads is easir to place because of the increased stability and the accuracy of placement is greatly increased. The increased insure that the retainer comforms ideally to the lingual surface of the teeth being retained.

  • PDF

Effect of implant diameter and cantilever length on the marginal bone height changes and stability of implants supporting screw retained prostheses: A randomized double blinded control trial

  • Heba Ezzeldin Khorshid;Noha Ossama Issa;Amr Mohamed Ekram
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.101-113
    • /
    • 2023
  • PURPOSE. This randomized controlled trial aimed to evaluate the effect of implants' two different diameters and cantilever lengths on the marginal bone loss and stability of mplants supporting maxillary prostheses. MATERIALS AND METHODS. Ninety-six implants were placed in sixteen completely edentulous maxillary ridges. Patients were randomly divided into two groups: Group A, implants were placed with a cantilever to anterior-posterior AP spread length (CL:AP) at a ratio of 1:3; Group B, implants were placed with a CL:AP at a ratio of 1:2. Patients were further divided into four sub-groups: Groups A1, A2, B1, and B2. Groups A1 and B1 received small diameter implants while Groups A2 and B2 received standard diameter implants. Bone height and stability measurements around each implant were performed at 0, 4, 8 and 24 months after definitive prostheses delivery. RESULTS. Statistical analysis of the mean implant stability and height values revealed an insignificant difference between Group A1 and Group A2 at all the different time intervals while significantly higher values in Group B1 in comparison with Group B2. Results also showed significantly higher values in Group A1 in comparison with Group B1 and an insignificant difference between Group A2 and Group B2 at all the different time intervals. CONCLUSION. It can be concluded that the use of small diameter implants placed with a CL:AP at a ratio of 1:3 provided predictable results and that the 1:2 CL:AP significantly induced more critical bone loss in the small diameter implants group, which can significantly reduce long term success and survival of implants

Microstructure and Mechanical Properties of P Added 0.15C-1.5Mn-1.5Al TRIP Aided Cold Rolled Steel (P 첨가 0.15C-1.5Mn-1.5Al TRIP형 냉연강판의 미세조직과 기계적 성질)

  • Ahn M. W.;Cho K. M.;Suh D. W.;Oh C. S.;Kim S. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.712-717
    • /
    • 2005
  • Microstructure and mechanical properties are investigated for 0.15C-1.5Mn-1.5Al TRIP aided cold rolled steels containing $0.05wt\%P$ and $0.1wt\%P$. Despite of the complete replacement of Si by Al, the TRIP steel shows tensile strength of 700MPa and total elongation of $35\%$ by addition of $0.1wt\%$ P. Tensile strength of P added TRIP steels is not only affected by the solid solution hardening but also the volume fraction of retained austenite. As P content increases from $0.05wt\%$ to $0.1wt\%$, tensile strength and volume fraction of retained austenite are increased, but elongation is decreased. The lower stability of austenite in $0.1wt\%$ P added steel is responsible for the decrease of the elongation.

The Effect of Second Stage Heat Treatment on Mechanical Properties of TRIP aided Triple Phase Steel (TRIP형 복합조직강판의 기계적 성질에 미치는 2단 열처리 영향)

  • Lee, Y.S.;Kim, Y.S.;Yoon, J.K.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.216-226
    • /
    • 1998
  • Heat treatment conditions and the formation of microstructures were studied for improving the transformation-induced plasticity(TRIP) effect of retained austenite and mechanical properties of Fe-0.2%C-1.5%Si-1.5%Mn sheet steel. An excellent combination of elongation about 30% and high strength over 760MPa was achieved by processing of intercritical annealing and isothermal holding Intercritical annealing the sheet steel produced fine particles($1{\sim}2{\mu}m$) of retained austenite which were stabilized due to C enrichment by subsequent holding in bainite transformation range. Heat treatment conditions were depended on the shape and distribution of second phases as well as the volume fraction and stability of retained austenrte. In this work, the heat treatment condition of optimal strength-elongation balance was obtained by holding the steel at $400^{\circ}C$ for 200sec, after intercritical annealing at $790^{\circ}C$ for 300sec.

  • PDF