• Title/Summary/Keyword: resveratrol synthase gene

Search Result 15, Processing Time 0.027 seconds

Metabolic Engineering for Resveratrol Derivative Biosynthesis in Escherichia coli

  • Jeong, Yu Jeong;Woo, Su Gyeong;An, Chul Han;Jeong, Hyung Jae;Hong, Young-Soo;Kim, Young-Min;Ryu, Young Bae;Rho, Mun-Chual;Lee, Woo Song;Kim, Cha Young
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.318-326
    • /
    • 2015
  • We previously reported that the SbROMT3syn recombinant protein catalyzes the production of the methylated resveratrol derivatives pinostilbene and pterostilbene by methylating substrate resveratrol in recombinant E. coli. To further study the production of stilbene compounds in E. coli by the expression of enzymes involved in stilbene biosynthesis, we isolated three stilbene synthase (STS) genes from rhubarb, peanut, and grape as well as two resveratrol O-methyltransferase (ROMT) genes from grape and sorghum. The ability of RpSTS to produce resveratrol in recombinant E. coli was compared with other AhSTS and VrSTS genes. Out of three STS, only AhSTS was able to produce resveratrol from p-coumaric acid. Thus, to improve the solubility of RpSTS, VrROMT, and SbROMT3 in E. coli, we synthesized the RpSTS, VrROMT and SbROMT3 genes following codon-optimization and expressed one or both genes together with the cinnamate/4-coumarate:coenzyme A ligase (CCL) gene from Streptomyces coelicolor. Our HPLC and LC-MS analyses showed that recombinant E. coli expressing both ScCCL and RpSTSsyn led to the production of resveratrol when p-coumaric acid was used as the precursor. In addition, incorporation of SbROMT3syn in recombinant E. coli cells produced resveratrol and its mono-methylated derivative, pinostilbene, as the major products from p-coumaric acid. However, very small amounts of pterostilbene were only detectable in the recombinant E. coli cells expressing the ScCCL, RpSTSsyn and SbROMT3syn genes. These results suggest that RpSTSsyn exhibits an enhanced enzyme activity to produce resveratrol and SbROMT3syn catalyzes the methylation of resveratrol to produce pinostilbene in E. coli cells.

Enrichment of Resveratrol Content in Harvested Grape using Modulation of Cell Metabolism with UV Treatment (수확 후 포도의 UV 처리 세포대사조절에 의한 레스베라트롤 함량 강화)

  • Cho, Yong-Jin;Maeng, Jin-Soo;Kim, Chong-Tai;Pyee, Jae-Ho
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.5
    • /
    • pp.739-745
    • /
    • 2011
  • This study was performed to investigate the enrichment of resveratrol content in harvested grapes using the modulation of cell metabolism with ultra-violet (UV) irradiation. Resveratrol, a phytoalexin, is produced by stilbene synthase (STSY) from malonyl-CoA and ${\rho}$-coumaroyl-CoA. Its biosynthesis has been reported to be induced by UV and other environmental factors. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that STSY Promoter 1 in grapes was very highly expressed by treatment with UV. Grapes were harvested and treated for post-harvest induction of STSY gene expression with UV, and then their resveratrol content was analyzed. UV treatment for 5 minutes provided the best condition for the induction of STSY gene expression. When harvested Gerbong and MBA grapes were treated with a prototype UV radiator, their resveratrol content was enriched upto 5 times compared with untreated grapes. These results suggest that a post-harvest UV treatment can be applied to enrich resveratrol content in grapes and add value to them.