• Title/Summary/Keyword: result value

Search Result 14,281, Processing Time 0.048 seconds

Studies on the ${\beta}-Tyrosinase$ -Part 2. On the Synthesis of Halo-tyrosine by ${\beta}-Tyrosinase$- (${\beta}-Tyrosinase$에 관한 연구 -제2보 ${\beta}-Tyrosinase$에 의한 Halogen화(化) Tyrosine의 합성(合成)-)

  • Kim, Chan-Jo;Nagasawa, Toru;Tani, Yoshiki;Yamada, Hideaki
    • Applied Biological Chemistry
    • /
    • v.22 no.4
    • /
    • pp.198-209
    • /
    • 1979
  • L-Tyrosine, 2-chloro-L-tyrosine, 2-bromo-L-tyrosine, and 2-iodo-L-tyrosine were synthesized by ${\beta}-tyrosinase$ obtained from cells of Escherichia intermedia A-21, through the reversal of the ${\alpha},{\beta}-elimination$ reaction, and their molecular structures were analyzed by element analysis, NMR spectroscopy, mass spectrometry and IR spectroscopy. Rates of synthesis and hydrolysis of halogenated tyrosines by ${\beta}-tyrosinase$, inhibition of the enzyme activity by halogenated phenols, and effects of addition of m-bromophenol on the synthesis of 2-bromotyrosine were determined. The results obtained were as follows: 1) In the synthesis of halogenated tyrosines, the yield of 2-chlorotyrosine from m-chlorophenol were approximately 15 per cent, that of 2-bromotyrosine from m-bromophenol 13.8 per cent, and that of 2-iodotyrosine from m-iodophenol 9.8 per cent. 2) Rate of synthesis of halogenated tyrosines by ${\beta}-tyrosinase$ was slower than that of tyrosine and the rates were decreased in the order of chlorine, bromine and iodine, that is, by increasing the atomic radius. Relative rate of 2-chlorotyrosine synthesis was determined to be 28.2, that of 2-bromotyrosine to be 8.13, and that of 2-iodotyrosine to be 0.98, respectively, against 100 of tyrosine. However 3-iodotyrosine was not synthesized by the enzyme. 3) The relative rate of 2-chlorotyrosine hydrolysis by ${\beta}-tyrosinase$ was 70.7, that of 2-bromotyrosine was 39.0, and that of 2-iodotyrosine was 12.6 against 100 of tyrosine, respectively. The rate of hydrolysis appeared to be decreased in the order of chlorine, bromine and iodine, that is, by increasing the atomic radius or by decreasing the electronegativity. But 3-iodotyrosine was not hydrolyzed by the enzyme. 4) The activity of ${\beta}-tyrosinase$ was inhibited by phenol markedly. Of the halogenated phenols, o-, or m-chlorophenol and o-bromophenol gave marked inhibition on the enzyme action, however inhibition by iodophenol was not strong. Plotting by Lineweaver-Burk method, a mixed-type inhibition by m-chlorophenol was observed and its Ki value was found to be $5.46{\times}10^{-4}M$. 5) During the synthesizing reaction of 2-bromotyrosine by the enzyme, sequential addition of substrate which was m-bromophenol with time intervals and in a small amount resulted in better yield of the product. 6) The halogenated tyrosines which were produced by ${\beta}-tyrosinase$ from pyruvate, ammonia and m-halogenated phenols were analysed to determine their molecular structures by element analysis, NMR spectroscopy, mass spectrometry, and IR spectroscopy. The result indicated that they were 2-chloro-L-tyrosine, 2-bromo-L-tyrosine, and 2-iodo-L-tyrosine, respectively.

  • PDF

Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining (데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발)

  • Yoon, Seungjin;Kim, Suhwan;Shin, Kyungshik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2015
  • In this paper, we report what we have observed with regards to a prediction model for the military based on enlisted men's internal(cumulative records) and external data(SNS data). This work is significant in the military's efforts to supervise them. In spite of their effort, many commanders have failed to prevent accidents by their subordinates. One of the important duties of officers' work is to take care of their subordinates in prevention unexpected accidents. However, it is hard to prevent accidents so we must attempt to determine a proper method. Our motivation for presenting this paper is to mate it possible to predict accidents using enlisted men's internal and external data. The biggest issue facing the military is the occurrence of accidents by enlisted men related to maladjustment and the relaxation of military discipline. The core method of preventing accidents by soldiers is to identify problems and manage them quickly. Commanders predict accidents by interviewing their soldiers and observing their surroundings. It requires considerable time and effort and results in a significant difference depending on the capabilities of the commanders. In this paper, we seek to predict accidents with objective data which can easily be obtained. Recently, records of enlisted men as well as SNS communication between commanders and soldiers, make it possible to predict and prevent accidents. This paper concerns the application of data mining to identify their interests, predict accidents and make use of internal and external data (SNS). We propose both a topic analysis and decision tree method. The study is conducted in two steps. First, topic analysis is conducted through the SNS of enlisted men. Second, the decision tree method is used to analyze the internal data with the results of the first analysis. The dependent variable for these analysis is the presence of any accidents. In order to analyze their SNS, we require tools such as text mining and topic analysis. We used SAS Enterprise Miner 12.1, which provides a text miner module. Our approach for finding their interests is composed of three main phases; collecting, topic analysis, and converting topic analysis results into points for using independent variables. In the first phase, we collect enlisted men's SNS data by commender's ID. After gathering unstructured SNS data, the topic analysis phase extracts issues from them. For simplicity, 5 topics(vacation, friends, stress, training, and sports) are extracted from 20,000 articles. In the third phase, using these 5 topics, we quantify them as personal points. After quantifying their topic, we include these results in independent variables which are composed of 15 internal data sets. Then, we make two decision trees. The first tree is composed of their internal data only. The second tree is composed of their external data(SNS) as well as their internal data. After that, we compare the results of misclassification from SAS E-miner. The first model's misclassification is 12.1%. On the other hand, second model's misclassification is 7.8%. This method predicts accidents with an accuracy of approximately 92%. The gap of the two models is 4.3%. Finally, we test if the difference between them is meaningful or not, using the McNemar test. The result of test is considered relevant.(p-value : 0.0003) This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of enlisted men's data. Additionally, various independent variables used in the decision tree model are used as categorical variables instead of continuous variables. So it suffers a loss of information. In spite of extensive efforts to provide prediction models for the military, commanders' predictions are accurate only when they have sufficient data about their subordinates. Our proposed methodology can provide support to decision-making in the military. This study is expected to contribute to the prevention of accidents in the military based on scientific analysis of enlisted men and proper management of them.

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Results of Bronchial Sleeve Resection for Primary Lung Cancer (원발성 폐암에 대한 기관지 소매 절제술의 성적)

  • Kim, Dae-Hyun;Youn, Hyo-Chul;Kim, Soo-Cheol;Kim, Bum-Shik;Cho, Kyu-Seok;Kwak, Young-Tae;Hwang, En-Gu;Kim, Dong-Won;Park, Joo-Chul
    • Journal of Chest Surgery
    • /
    • v.40 no.1 s.270
    • /
    • pp.37-44
    • /
    • 2007
  • Background: It is known that long-term survival rate in patients underwent bronchial sleeve lobectomy for primary lung cancer is at least equal to that in patients underwent pneumonectomy, and bronchial sleeve lobectomy is performed in patients with suitable tumor location even in patients have adequate pulmonary function. Sleeve pneumonectomy is performed when carina was invaded by tumor or tumor location was near to the carina. We performed this study to know our results of sleeve resection for primary lung cancer. Material and Method: We analyzed retrospectively the medical records of 45 patients who underwent sleeve lobectomy or sleeve pneumonectomy for primary lung cancer by one thoracic surgeon from May 1990 to July 2003 in Department of Thoracic & Cardiovascular Surgery, College of Medicine, Kyung Hee University. Follow-up loss was absent and last follow-up was performed in April 5, 2005. Kaplan-Meyer method and log-lank test were used to know long-term survival rate and p-value. Result: Mean age was 60 years old and male to female ratio 41:1. Histologic types were squamous cell carcinoma were 39, adenocarcinoma were 4, and others were 2 patients. Pathologic stages were I 14, II 14, and III 17 patients. Nodal stages were N0 23, N1 13, and N2 9 patients. Types of operation were sleeve lobectomy 40 and sleeve pneumonectomy 5 patients. Operative mortality was 3 patients and its cause was respiratory complications. Early complications were pneumonia 4, atelectasis 8, air leakage more than 7 days 6, and atrial fibrillation 4 patients. In 19 patients tumor was recurred. Local recurrence was 10 and systemic metastasis was 9 patients. Overall 5, 10-year survival rate were 54.2%, 42.5%. The 5, 10-year survival rates according to the pathologic stage were 83.9%, 67.1% in stage I, 55%, 47.1% in II, 33.3%, 25% in III, and significance difference was present between stage I and III. The 5, 10-year survival rate according to the lymph node involvement were 63.9%, 54.6% in N0, 53,8%, 46.5% in N1, 28.5%, 14.2% in N2, and significance difference was present between N0 and N2. Conclusion: Because bronchial sleeve lobectomy for primary lung cancer could be performed safely and shows acceptable long-term survival rate, it could be considered primary in case of suitable tumor location if complete resection is possible. Although sleeve pneumonectomy for primary lung cancer shows somewhat high operative mortality rate, it could be considered in view of curative treatment.

Development of a Traffic Accident Prediction Model and Determination of the Risk Level at Signalized Intersection (신호교차로에서의 사고예측모형개발 및 위험수준결정 연구)

  • 홍정열;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.155-166
    • /
    • 2002
  • Since 1990s. there has been an increasing number of traffic accidents at intersection. which requires more urgent measures to insure safety on intersection. This study set out to analyze the road conditions, traffic conditions and traffic operation conditions on signalized intersection. to identify the elements that would impose obstructions in safety, and to develop a traffic accident prediction model to evaluate the safety of an intersection using the cop relation between the elements and an accident. In addition, the focus was made on suggesting appropriate traffic safety policies by dealing with the danger elements in advance and on enhancing the safety on the intersection in developing a traffic accident prediction model fir a signalized intersection. The data for the study was collected at an intersection located in Wonju city from January to December 2001. It consisted of the number of accidents, the road conditions, the traffic conditions, and the traffic operation conditions at the intersection. The collected data was first statistically analyzed and then the results identified the elements that had close correlations with accidents. They included the area pattern, the use of land, the bus stopping activities, the parking and stopping activities on the road, the total volume, the turning volume, the number of lanes, the width of the road, the intersection area, the cycle, the sight distance, and the turning radius. These elements were used in the second correlation analysis. The significant level was 95% or higher in all of them. There were few correlations between independent variables. The variables that affected the accident rate were the number of lanes, the turning radius, the sight distance and the cycle, which were used to develop a traffic accident prediction model formula considering their distribution. The model formula was compared with a general linear regression model in accuracy. In addition, the statistics of domestic accidents were investigated to analyze the distribution of the accidents and to classify intersections according to the risk level. Finally, the results were applied to the Spearman-rank correlation coefficient to see if the model was appropriate. As a result, the coefficient of determination was highly significant with the value of 0.985 and the ranks among the intersections according to the risk level were appropriate too. The actual number of accidents and the predicted ones were compared in terms of the risk level and they were about the same in the risk level for 80% of the intersections.

Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page (고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로)

  • Jeon, Su-Hyeon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • It is a rising trend that the number of users using one of the social media channels, the Social Network Service, so called the SNS, is getting increased. As per to this social trend, more companies have interest in this networking platform and start to invest their funds in it. It has received much attention as a tool spreading and expanding the message that a company wants to deliver to its customers and has been recognized as an important channel in terms of the relationship marketing with them. The environment of media that is radically changing these days makes possible for companies to approach their customers in various ways. Particularly, the social network service, which has been developed rapidly, provides the environment that customers can freely talk about products. For companies, it also works as a channel that gives customized information to customers. To succeed in the online environment, companies need to not only build the relationship between companies and customers but focus on the relationship between customers as well. In response to the online environment with the continuous development of technology, companies have tirelessly made the novel marketing strategy. Especially, as the one-to-one marketing to customers become available, it is more important for companies to maintain the relationship marketing with their customers. Among many SNS, Facebook, which many companies use as a communication channel, provides a fan page service for each company that supports its business. Facebook fan page is the platform that the event, information and announcement can be shared with customers using texts, videos, and pictures. Companies open their own fan pages in order to inform their companies and businesses. Such page functions as the websites of companies and has a characteristic of their brand communities such as blogs as well. As Facebook has become the major communication medium with customers, companies recognize its importance as the effective marketing channel, but they still need to investigate their business performances by using Facebook. Although there are infinite potentials in Facebook fan page that even has a function as a community between users, which other platforms do not, it is incomplete to regard companies' Facebook fan pages as communities and analyze them. In this study, it explores the relationship among customers through the network of the Facebook fan page users. The previous studies on a company's Facebook fan page were focused on finding out the effective operational direction by analyzing the use state of the company. However, in this study, it draws out the structural variable of the network, which customer committment can be measured by applying the social network analysis methodology and investigates the influence of the structural characteristics of network on the business performance of companies in an empirical way. Through each company's Facebook fan page, the network of users who engaged in the communication with each company is exploited and it is the one-mode undirected binary network that respectively regards users and the relationship of them in terms of their marketing activities as the node and link. In this network, it draws out the structural variable of network that can explain the customer commitment, who pressed "like," made comments and shared the Facebook marketing message, of each company by calculating density, global clustering coefficient, mean geodesic distance, diameter. By exploiting companies' historical performance such as net income and Tobin's Q indicator as the result variables, this study investigates influence on companies' business performances. For this purpose, it collects the network data on the subjects of 54 companies among KOSPI-listed companies, which have posted more than 100 articles on their Facebook fan pages during the data collection period. Then it draws out the network indicator of each company. The indicator related to companies' performances is calculated, based on the posted value on DART website of the Financial Supervisory Service. From the academic perspective, this study suggests a new approach through the social network analysis methodology to researchers who attempt to study the business-purpose utilization of the social media channel. From the practical perspective, this study proposes the more substantive marketing performance measurements to companies performing marketing activities through the social media and it is expected that it will bring a foundation of establishing smart business strategies by using the network indicators.

A study on the Success Factors and Strategy of Information Technology Investment Based on Intelligent Economic Simulation Modeling (지능형 시뮬레이션 모형을 기반으로 한 정보기술 투자 성과 요인 및 전략 도출에 관한 연구)

  • Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.35-55
    • /
    • 2013
  • Information technology is a critical resource necessary for any company hoping to support and realize its strategic goals, which contribute to growth promotion and sustainable development. The selection of information technology and its strategic use are imperative for the enhanced performance of every aspect of company management, leading a wide range of companies to have invested continuously in information technology. Despite researchers, managers, and policy makers' keen interest in how information technology contributes to organizational performance, there is uncertainty and debate about the result of information technology investment. In other words, researchers and managers cannot easily identify the independent factors that can impact the investment performance of information technology. This is mainly owing to the fact that many factors, ranging from the internal components of a company, strategies, and external customers, are interconnected with the investment performance of information technology. Using an agent-based simulation technique, this research extracts factors expected to affect investment performance on information technology, simplifies the analyses of their relationship with economic modeling, and examines the performance dependent on changes in the factors. In terms of economic modeling, I expand the model that highlights the way in which product quality moderates the relationship between information technology investments and economic performance (Thatcher and Pingry, 2004) by considering the cost of information technology investment and the demand creation resulting from product quality enhancement. For quality enhancement and its consequences for demand creation, I apply the concept of information quality and decision-maker quality (Raghunathan, 1999). This concept implies that the investment on information technology improves the quality of information, which, in turn, improves decision quality and performance, thus enhancing the level of product or service quality. Additionally, I consider the effect of word of mouth among consumers, which creates new demand for a product or service through the information diffusion effect. This demand creation is analyzed with an agent-based simulation model that is widely used for network analyses. Results show that the investment on information technology enhances the quality of a company's product or service, which indirectly affects the economic performance of that company, particularly with regard to factors such as consumer surplus, company profit, and company productivity. Specifically, when a company makes its initial investment in information technology, the resultant increase in the quality of a company's product or service immediately has a positive effect on consumer surplus, but the investment cost has a negative effect on company productivity and profit. As time goes by, the enhancement of the quality of that company's product or service creates new consumer demand through the information diffusion effect. Finally, the new demand positively affects the company's profit and productivity. In terms of the investment strategy for information technology, this study's results also reveal that the selection of information technology needs to be based on analysis of service and the network effect of customers, and demonstrate that information technology implementation should fit into the company's business strategy. Specifically, if a company seeks the short-term enhancement of company performance, it needs to have a one-shot strategy (making a large investment at one time). On the other hand, if a company seeks a long-term sustainable profit structure, it needs to have a split strategy (making several small investments at different times). The findings from this study make several contributions to the literature. In terms of methodology, the study integrates both economic modeling and simulation technique in order to overcome the limitations of each methodology. It also indicates the mediating effect of product quality on the relationship between information technology and the performance of a company. Finally, it analyzes the effect of information technology investment strategies and information diffusion among consumers on the investment performance of information technology.

Evaluation of a colloid gel(Slime) as a body compensator for radiotherapy (Colloid gel(Slime)의 방사선 치료 시 표면 보상체로서의 유용성 평가)

  • Lee, Hun Hee;Kim, Chan Kyu;Song, Kwan Soo;Bang, Mun Kyun;Kang, Dong Yun;Sin, Dong Ho;Lee, Du Heon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.191-199
    • /
    • 2018
  • Purpose : In this study, we evaluated the usefulness of colloid gel(slime) as a compensator for irregular patient surfaces in radiation therapy. Materials and Methods : For this study, colloid gel suitable for treatment was made and four experiments were conducted to evaluate the applicability of radiation therapy. Trilogy(Varian) and CT(SOMATOM, Siemens) were used as treatment equipment and CT equipment. First, the homogeneity according to the composition of colloid gel was measured using EBT3 Film(RIT). Second, the Hounsfield Unit(HU) value of colloid gel was measured and confirmed by CRIS phantom, Eclipse RTP(Eclipse 13.1, Varian) and CT. Third, to measure the deformation and degeneration of colloid gel during the treatment period, it was measured 3 times daily for 2 weeks using an ion chamber(PTW-30013, PTW). The fourth experiment was compared the treatment plan and measured dose distributions using bolus, rice, colloid gel and additional, dose profiles in an environment similar to actual treatment using our own acrylic phantom. Result : First experiment, density of the colloid gel cases 1, 2 and 3 was $1.02g/cm^3$, $0.99g/cm^3$ and $0.96g/cm^3$. When the homogeneity was measured at 6 MV and 9 MeV, case 1 was more homogeneous than the other cases, as 1.55 and 1.98. In the second experiment, the HU values of case 1, 2, 3 were 15 and when the treatment plan was compared with the measured doses, the difference was within 1 % at all 9, 12 MeV and a difference of -1.53 % and -1.56 % within the whole 2 % at 6 MV. In the third experiment, the dose change of colloid gel was measured to be about 1 % for 2 weeks. In the fourth experiment, the dose difference between the treatment plan and EBT3 film was similar for both colloid gel and bolus, rice at 6 MV. But colloid gel showed less dose difference than bolus and rice at 9 MeV. Also, dose profile of colloid gel showed a more uniform dose distribution than the bolus and rice. Conclusion : In this study, the density of colloid gel prepared for radiation therapy was $1.02g/cm^3$ similar to the density of water, and alteration or deformation was not observed during the radiotherapy process. Although we pay attention to the density when manufacturing colloid gel, it is sufficient in that it can deliver the dose uniformly through the compensation of the patient's body surface more than the bolus and rice, and can be manufactured at low cost. Further studies and studies for clinical applications are expected to be applicable to radiation therapy.

  • PDF