• Title/Summary/Keyword: restriction of scalars

Search Result 6, Processing Time 0.017 seconds

RESTRICTION OF SCALARS WITH SIMPLE ENDOMORPHISM ALGEBRA

  • Yu, Hoseog
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.555-560
    • /
    • 2022
  • Suppose L/K be a finite abelian extension of number fields of odd degree and suppose an abelian variety A defined over L is a K-variety. If the endomorphism algebra of A/L is a field F, the followings are equivalent : (1) The enodomorphiam algebra of the restriction of scalars from L to K is simple. (2) There is no proper subfield of L containing LGF on which A has a K-variety descent.

RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES

  • Byeon, Dongho;Jeong, Keunyoung;Kim, Nayoung
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.123-132
    • /
    • 2021
  • Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars ResKLE decomposes (up to isogeny) into abelian varieties over K $$Res^L_KE{\sim}{\bigoplus_{F{\in}S}}A_F,$$ where S is the set of cyclic extensions of K in L. It is known that if L is a quadratic extension, then AL is the quadratic twist of E. In this paper, we consider the case that K is a number field containing a primitive third root of unity, $L=K({\sqrt[3]{D}})$ is the cyclic cubic extension of K for some D ∈ K×/(K×)3, E = Ea : y2 = x3 + a is an elliptic curve with j-invariant 0 defined over K, and EaD : y2 = x3 + aD2 is the cubic twist of Ea. In this case, we prove AL is isogenous over K to $E_a^D{\times}E_a^{D^2}$ and a property of the Selmer rank of AL, which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.

TATE-SHAFAREVICH GROUPS AND SCHANUEL'S LEMMA

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.137-141
    • /
    • 2017
  • Let A be an abelian variety defined over a number field K and let L be a finite Galois extension of K. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Let $Res_{L/K}(A)$ be the restriction of scalars of A from L to K and let B be an abelian subvariety of $Res_{L/K}(A)$ defined over K. Assuming that III(A/L) is finite, we compute [III(B/K)][III(C/K)]/[III(A/L)], where [X] is the order of a finite abelian group X and the abelian variety C is defined by the exact sequence defined over K $0{\longrightarrow}B{\longrightarrow}Res_{L/K}(A){\longrightarrow}C{\longrightarrow}0$.

ON THE TATE-SHAFAREVICH GROUPS OVER DEGREE 3 NON-GALOIS EXTENSIONS

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • Let A be an abelian variety defined over a number field K and let L be a degree 3 non-Galois extension of K. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Assuming that III(A/L) is finite, we compute [III(A/K)][III($A_{\varphi}/K$)]/[III(A/L)], where [X] is the order of a finite abelian group X.

ON THE TATE-SHAFAREVICH GROUPS OVER BIQUADRATIC EXTENSIONS

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Let A be an abelian variety defined over a number field K. Let L be a biquadratic extension of K with Galois group G and let III (A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Assuming III(A/L) is finite, we compute [III(A/K)]/[III(A/L)] where [X] is the order of a finite abelian group X.

COUSIN COMPLEXES AND GENERALIZED HUGHES COMPLEXES

  • Kim, Dae-Sig;Song, Yeong-Moo
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.503-511
    • /
    • 1994
  • In this paper, the ring A will mean a commutative Noetherian ring with non-zero multiplicative identity, it is understood that the ring homomorphisms respect identity elements and M will denote an A-module. Throughout this paper A and B will denote rings, $f : A \to B$ a ring homomorphism. C(A) (resp. C(B)) presents the category of all A-modules (resp. B-modules) and A-homomorphisms (resp. B-homorphisms) between them. The following ideas will be used without further explanation. B can be regarded as an A-module by means of f and $M\otimesB$ can be regarded as a B-module in the natural way. Furthermore the restriction of scalars provides a functor from C(B) to C(A).

  • PDF