• Title/Summary/Keyword: resting spores

Search Result 26, Processing Time 0.023 seconds

Ornamented Resting Spores of a Green Alga, Chlorella sp., Collected from the Stone Standing Buddha Statue at Jungwon Miruksazi in Korea

  • Klochkova, Tatyana A.;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.295-298
    • /
    • 2005
  • The growth of subaerial microalgae on historic buildings or various cultural properties causes discoloration and physico-chemical deterioration of the surfaces. We collected a subaerial chlorophyte, Chlorella sp., from the stone Standing Buddha statue at Jungwon Miruksazi, which is a national treasure of Korea, and found dormant, thickwalled spores with regular pentagonal ornamentation along with the vegetative Chlorella cells. The morphology of Chlorella resting spores was compared to that of the other green algal resting cells. The ornamented spores and smooth-walled vegetative cells revived in 2 weeks in a liquid freshwater medium and started reproduction by autospores. To our knowledge, the ability of Chlorella to form ornamented dormant spores in drought condition was not previously recorded. The ornamentation of spores would supplement taxonomic characteristics of this genus.

Some Environmental Factors Affecting Germination and Survival of Resting Spores of Plasmodioprora brassicae (배추무사마귀병균 휴면포자의 발아 및 생존에 미치는 몇가지 환경요인)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Hong-Mo
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.66-71
    • /
    • 2000
  • Effect of temperature on resting spore germination of Plasmodioprora brassicae was indirectly estimated based on examining temporal change of number of inactive resting spores. Resting spore germination was the highest at $28^{\circ}C$ reaching 55.6% and 82.5%, 24hr and 132hr after treatment, respectively. Optimum pH for resting spore germination was pH6, following pH7 and pH8, and the germination was inhibited at pH 4, and pH9. termination of resting spores was stimulated by root extracts of radish, Chinese cabbage and kidney bean, but inhibited by that of lettuce. Number of inactive resting spores was increased as temperature increases and time prolongs after temperature treatment. However, degree of inactivation of resting spores after 1hr at $40{\sim}65^{\circ}C$ was similar with $40{\sim}60%$, but rapidly increased to 91.5% at $70^{\circ}C$. When root galls were submerged in water, density of inactive resting spores was increased rapidly and reached 60.3% 9 days after treatment. Flooding of infested soil resulted in 30% reduction of survived resting spores 5 months later. Among the two registered fungicides, fluazinam was better for inactivation of resting spores than flusulfamide, but both fungicides were inferior to phosphoric acid.

  • PDF

Occurrence of Clubroot Caused by Plasmodiophora brassicae in Baecheongchae

  • Kim, Wan-Gyu;Oh, Sang-Keun;Semunyana, Marc;Han, Man-Jong;Lee, Gyo-Bin;Cho, Weon-Dae
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.499-503
    • /
    • 2020
  • Clubroot symptoms were frequently observed on the roots of Baecheongchae plants grown in vinyl greenhouses of a farmer located in Yangpyeong area of Korea during a disease survey in June 2019. The incidence of diseased Baecheongchae plants ranged from 30 to 90% in the vinyl greenhouses investigated. Many resting spores were found in the tissue of root galls collected. The resting spores were hyaline and spherical and measured 2.5-4.2 ㎛ in diameter. Three inoculum suspensions of resting spores prepared from the root galls were inoculated to the roots of healthy Baecheongchae plants. All the inoculum suspensions caused clubroot symptoms to appear on the roots of the inoculated Baecheongchae plants. The symptoms on the roots induced by artificial inoculation were similar to those observed in the plants of the vinyl greenhouses during the disease survey. Resting spores of the pathogen were recovered from the root galls of the inoculated plants. Three root gall isolates obtained from the inoculated plants were used for molecular identification. Comparing the isolates to the Plasmodiophora brassicae strains in GenBank, the amplification products demonstrated 100% similarity with the internal transcribed spacer (ITS2) sequences. The clubroot pathogen was identified as P. brassicae according to its morphological, pathological, and molecular characteristics. This is the first report of P. brassicae causing clubroot in Baecheongchae.

Distribution of lasmodiophora brassicae Causing clubroot Disease of Chinese Cabbage in Soil (배추무사마귀병균의 토양내 분포)

  • 김충회;조원대;김홍모
    • Research in Plant Disease
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Population density of Plasmodiophora brassicae in soil of severely infested fields of Chinese cabbage decreased as soil depth increases. More than 97% of total population was found in surface soil (0-5cm depth), and a few resting spores of the pathogen were also detected in 40 cm-deep soil. the clubroot pathogen was evenly distributed over the surface soil without clustering around a Chinese cabbage plant. Density of P. brassicae in soil at 23 Chinese cabbage fields in Pyongchang, Kangwon province ranged widely from less than 10$^4$resting spores/g soil to above 10$\^$6/ resting spores/g soil. Few or none of P. brassicae was found in virgin soil without any cropping history, intermediate with 0.36-2.75$\times$10$^4$resting spores/g soil in fields of other crops but more than 10 times higher population was found in severely infected Chinese cabbage fields. Density of P. brassicae was highest in the fields of monocropping of crucifers with some exceptions, but was low in rotated fields with corn, rye, medicinal crops or other non-host vegetables. Pathoen density in soil was decreased rapidly when rye or medicinal crops were cultivated after Chinese cabbage, suggesting that survival of clubroot pathogen appears to be influenced greatly by cropping system. The improved method for detecting resting spores of P. brassicae in soil used in this study seemed to be adequate for estimating population density of P. brassicae in soil in aspects of clearer dyeing, increased detecting sensitivity, and simplicity in preparation.

  • PDF

Occurrence of Clubroot on Pak-Choi Caused by Plasmodiophora brassicae

  • Kim, Wan-Gyu;Moon, Mi-Hwa;Kim, Jin-Hee;Choi, Hyo-Won;Hong, Sung-Kee
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.69-71
    • /
    • 2009
  • Clubroot symptoms occurred severely on roots of Pak-Choi (Brassica campestris ssp. chinensis) grown in greenhouses in Gwangju city, Gyeonggi province, Korea in September, 2008. The incidence of the disease symptoms reached as high as 90% in three greenhouses investigated. The root galls collected from the greenhouses were sectioned using a scalpel and observed by light microscope. Many resting spores were found in the cells of the root gall tissues. Suspension of resting spores was prepared from the root galls and inoculated to roots of healthy Pak-Choi plants. Each of five resting spore suspensions caused clubroot symptoms on the roots, which were similar to those observed during the greenhouse survey. Resting spores of the pathogen were observed in the cells of the affected roots. The clubroot pathogen was identified as Plasmodiophora brassicae based on its morphological and pathological characteristics. This is the first report that Plasmodiophora brassicae causes clubroot of Pak-Choi.

Some Environmental factors Affecting Decay of Root Galls in Club Root Disease of Chinese Cabbage (배추무사마귀병 뿌리혹의 부패에 미치는 몇가지 환경요인)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Hong-Mo
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.61-65
    • /
    • 2000
  • Effects of temperature, soil moisture level, flooding, and soil microflora on decay of root galls in club root disease of Chinese cabbage were examined in the laboratory. Number of days required for complete decay of root galls was 3 days at $32^{\circ}C$ or higher, 12 days at $16{\sim}20^{\circ}C$ and 28 days at $8^{\circ}C$. As soil moisture content goes up, root gall decay became faster resulting 3 days for complete decay under saturated moisture condition at high temperature of $32^{\circ}C$, and 8 days under the same moisture level at $24^{\circ}C$. Soil moisture effect was relatively low at $24^{\circ}C$ compared to $32^{\circ}C$. Stimulation of decay by soil flooding was not observed at $32^{\circ}C$ but became apparent at $12^{\circ}C$. Influence of soil microflora on root gall decay was negligiable. Based on these results, temperature appears to be the most important factor affecting root gall decay in soil. Root gall decay is thought to be affected more easily by other environmental factors under low temperature conditions. Maturity of resting spores of Plasmodioprora brassicae in root galls tended to increase as time prolongs during root gall decay. Density of the resting spores was lower in fresh root galls where their maturity was also low as compared to completely decayed root galls. Number of resting spores in completely decayed root gall was $6.5{\times}10^{6}/g$ tissue and its maturity was over 95%.

  • PDF

Occurrence of Diatom in the Late Quaternary Sediments of the Northeastern East Sea (Sea of Japan) and its Paleoceanographic Changes (동해 북동부해역 제 4기 후기 퇴적물의 규조 산출과 고해양학적 변화)

  • Shin, Y.N.;Ikehara, K.;Yoon, H.I.;Kim, Y.;Woo, K.S.;Khim, B.K.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.305-319
    • /
    • 2000
  • A total of 50 diatom species and 1 subspecies belonging to 31 genera except Chaetoceros resting spores were identified in the 45 sediments subsampled from a gravity core GH98-1223 collected from the western Hokkaido Island located in the northeastern East Sea (Sea of Japan). The most dominant species is Thalassionema nitzschioides (Grunow) Hustedt, ranging 29 to 59% of the total assemblages, and most species including Denticulopsis seminae (Simonsen and Kanaya) Simonsen and Pseudoeunotia doliolus (Wallich) Grunow were less than 5% in average. Frequencies of cold-water species are generally higher than those of warm-water species and the vertical distribution of cold-water species was largely opposite to that of warm-water species in spite of ecological habitat difference. Frequency of cold-water species, D. seminae is reverse to that of P. doliolus, an indicator of the Tsushima Warm Current, which is consistent with diatom temperature value (T$_{d}$ value). The variation of T$_{d}$ values shows that the upper part of core with greater-than-average T$_{d}$ values represents postglacial warming trend. These T$_{d}$ values clearly demonstrate that the study area located in the northern part of the East Sea is gradually influenced by Tsushima Warm Current. In addition, the zig-zag variation in the lower part reflects the unstable seawater for diatom habitat. Chaetoceros resting spores indicating productivity and upwelling was 5.3 to 40%, with maximum peak at 80 cm. Chaetoceros resting spores/Chaetoceros vegetative cells, an indicator of relative amounts of biogenic material in the sediments was high at the upper 80 cm level, corresponding to the change of T$_{d}$ values. On the basis of diatom assemblages, the northeastern part of East Sea has experienced the effects of Tsushima Warm Current during the postglacial period of Holocene, which is similar to the modem climatic environment. However, the variation of P. doliolus reflects that the intensity of Tsushima Warm Current has been oscillated in the East Sea.

  • PDF

Diatom Succession Representing the Paleoclimatic Change from Laminated Sediments around Antarctica (남극 엽층리 퇴적물로부터 규조 종을 이용한 고기후 변화 연구)

  • Bak, Young-Suk;Yoon, Ho Il;Yoo, Kyu-Cheul;Lee, Young-Up
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.190-197
    • /
    • 2015
  • This study investigated the paleoclimatic change using diatoms that were extracted from the high-resolution laminated layers of diatom ooze sediment cores GC08-EB01 in the eastern basin of the Bransfield Strait, Antarctica. The range of diatom valves per gram of dry sediment was from $0.4-4.2{\times}10^8g^{-1}$ in quantitative diatom assemblage analysis. Laminations are classified using visually dominant diatom species and terrigenous content. Biogenic diatom ooze laminae characterised by bloom of Corethron crilophilum, Eucampia antarctica, Fragilariopsis curta, F. kerguelensis, Odontella weissflogii, Proboscia inermis, R. styliformis, Thalassiosira antarctica, and Chaetoceros resting spores. Terrigenous laminae characterised by mixed diatom assemblage. The ratio of (Fragilariopsis curta+F. cylindrus)/Thalassiosira antarctica increase in horizons, suggesting increased sea-ice cover in the study area during the late Holocene (cold events). As a result, five cold events are identified on the basis of frequency of the critical taxa throughout the section.

Diversity and Active Mechanism of Fengycin-Type Cyclopeptides from Bacillus subtilis XF-1 Against Plasmodiophora brassicae

  • Li, Xing-Yu;Mao, Zi-Chao;Wang, Yue-Hu;Wu, Yi-Xing;He, Yue-Qiu;Long, Chun-Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.313-321
    • /
    • 2013
  • Bacillus subtilis XF-1, a strain with demonstrated ability to control clubroot disease caused by Plasmodiophora brassicae, was studied to elucidate its mechanism of antifungal activity against P. brassicae. Fengycin-type cyclopeptides (FTCPs), a well-known class of compounds with strong fungitoxic activity, were purified by acid precipitation, methanol extraction, and chromatographic separation. Eight homologs of fengycin, seven homologs of dehydroxyfengycin, and six unknown FTCPs were characterized with LC/ESI-MS, LC/ESI-MS/MS, and NMR. FTCPs (250 ${\mu}g/ml$) were used to treat the resting spores of P. brassicae ($10^7/ml$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm ($A_{260}$) and at 280 nm ($A_{280}$) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be cleaved by the FTCPs of B. subtilis XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol.