• Title/Summary/Keyword: response variability

Search Result 410, Processing Time 0.038 seconds

Effect of Sowing Rates on Growth and Yield t Furrow Sowing of Rice in Paddy Field (벼 무논골뿌림재배시 파종량이 생육 및 수량에 미치는 영향)

  • 송영주;고복래;황창주;박건호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.86-91
    • /
    • 1995
  • This experiment was conducted to understand the response on sowing rates at furrow sowing of rice in paddy field. As sowing rates was increased, the number of seedling stand per$m^2$ was icreased, while panicie number per plant was decreased slightly. Leaf area at heading stage and effective tiller ratio were decreased with increasing of sowing rates, but heading date was not defferent among sowing rates. According to sowing rates was increased, culm length, panicle length, breaking strength, culm diameter were decreased, while lodging index was increased. Also, field lodging was observed in the higer sowing rates over 5kg/l0a. Althougth the panicle number per $m^2$ was increased with increasing of sowing rates, spike let per panicle and percent of filled spikelet were decreased. According to the result from the path coefficient analysis, percent of filled spikelets well identified to be the most influential variables on the variability in rice yield, so that improving percent of filled spikelets by inhibition of field lodging was the important matter to increase the yield. The optimal sowing rate and the number of seedling stand were estimated to be 4.5kg/l0a and 105 per $m^2$ respectively.

  • PDF

SUNSHINE, EARTHSHINE AND CLIMATE CHANGE I. ORIGIN OF, AND LIMITS ON SOLAR VARIABILITY

  • GOODE PHILIP R.;DZIEMBOWSKI W. A.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.75-81
    • /
    • 2003
  • Changes in the earth's climate depend on changes in the net sunlight reaching us. The net depends on the sun's output and earth's reflectance, or albedo. Here we develop the limits on the changes in the sun's output in historical times based on the physics of the origin of solar cycle changes. Many have suggested that the sun's output could have been $0.5\%$ less during the Maunder minimum, whereas the variation over the solar cycle is only about $0.1\%$. The frequencies of solar oscillations (f- and p-modes) evolve through the solar cycle, and provide the most exact measure of the cycle-dependent changes in the sun. But precisely what are they probing? The changes in the sun's output, structure and oscillation frequencies are driven by some combination of changes in the magnetic field, thermal structure and velocity field. It has been unclear what is the precise combination of the three. One way or another, this thorny issue rests on an understanding of the response of the solar structure to increased magnetic field, but this is complicated. Thus, we do not understand the origin of the sun's irradiance increase with increasing magnetic activity. Until recently, it seemed that an unphysically large magnetic field change was required to account for the frequency evolution during the cycle. However, the problem seems to have been solved (Dziembowski, Goode & Schou 2001) using f-mode data on size variations of the sun. From this and the work of Dziembowski & Goode (2003), we suggest that in historical times the sun couldn't be much dimmer than it is at activity minimum.

Modulation of Biotransformation Enzymes by Phytochemicals: Impact of Genotypes

  • Lampe Johanna W.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.65-70
    • /
    • 2004
  • Modulation of biotransformation enzymes is one mechanism by which a diet high in fruits and vegetable may influence cancer risk. Inhibition of cytochrome P450s (CYP) and concomitant induction of conjugating enzymes are hypothesized to reduce the impact of carcinogens in humans. Thus, exposure to types and amounts of phytochemicals may influence disease risk. Like other xenobiotics, many classes of phytochemicals are rapodly conjugated with glutathione, glucuronide, and sulfate moieties and excreted in urine and bile. In humans, circulating phytochemical levels very widely among individuals even in response to controlled dietary interventions. Polymorphisms in biotransformation enzymes, such as the glutathione S-transferases (GST), UDP-glucuronosyltransferases (UGT), and sulfotransferases (SULT), may ocntribute to the variability in phytochemical clearance and efficacy; polymorphic enzymes with lower enzyme activity prolong the half-lives of phytochmicals in vivo. Isothiocyanates (ITC) in cruciferous vegetables are catalyzed by the four major human GSTs: however reaction velocities of the enzymes differ greatly. In some observational studies of cancer, polymorphisms in the GSTMI and GSTTI genes that result in complete lack of GSTM1-1 protein, respectively, confer greater protection from cruciferous vegetable in individuals with these genotypes. Similarly, we have shown in a controlled dietary trial that levels of GST-alpha-induced by ITC-are higher in GSTMI-null individuals exposed to cruciferous vegetablse. The selectivity of glucuronosyl conjugation of flavonoids is dependent both on flavonoid structure as well as on the UGI isozyme involved in its conjuagtion. The effects of UGI polymorphisms on flavonoid clearnace have not been examind; but polymorphisms affect glucuronidation of several drugs. Given the strong interest in the chemopreventive effects of flavonoids, systematic evaluation of these polymorphic UGTs and flavonoid pharmacokinetics are warranted. Overall, these studies suggest that for phytochemicals that are metabolized by, and affect activity of, biotransformation enzymes, interactions between genetic polymorphisms in the enzymes and intake of the compounds should be considered in studies of cancer risk. Genetic polymorphisms in biotransformation enzymes may account in prat for individual variation in metabolism of a wide range of phytochemicals and their ultimate impact on health.

  • PDF

Investigating the scaling effect of the nonlinear response to precipitation forcing in a physically based hydrologic model (강우자료의 스케일 효과가 비선형수문반응에 미치는 영향)

  • Oh, Nam-Sun;Lee, K.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.149-153
    • /
    • 2006
  • Precipitation is the most important component and critical to the study of water and energy cycle. This study investigates the propagation of precipitation retrieval uncertainty in the simulation of hydrologic variables for varying spatial resolution on two different vegetation cover. We explore two remotely sensed rain retrievals (space-borne IR-only and radar rainfall) and three spatial grid resolutions. An offline Community Land Model (CLM) was forced with in situ meteorological data In turn, radar rainfall is replaced by the satellite rain estimates at coarser resolution $(0.25^{\circ},\;0.5^{\circ}\;and\;1^{\circ})$ to determine their probable impact on model predictions. Results show how uncertainty of precipitation measurement affects the spatial variability of model output in various modelling scales. The study provides some intuition on the uncertainty of hydrologic prediction via interaction between the land surface and near atmosphere fluxes in the modelling approach.

  • PDF

Optimal Parameters Estimation of Diffusion-Analogy Geomorphologic Instantaneous Unit Hydrograph Model (확산-유추 지형학적 순간단위도 모형의 최적매개변수 추정)

  • Kim, Joo-Cheol;Choi, Yong-Joon
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.385-394
    • /
    • 2011
  • In this study, optimal parameters of diffusion-analogy GIUH were calculated by separating channel and hillslope from drainage structures in the basin. Parameters of the model were composed of channel and hillslope, each velocity($u_c$, $u_h$) and diffusion coefficient($D_c$, $D_h$). Tanbu subwatershed in Bocheong river basin as a target basin was classified as 4th rivers by Strahler's ordering scheme. The optimization technique was applied to the SCE-UA, the estimated optimal parameters are as follows. $u_c$ : 0.589 m/s, $u_h$ : 0.021 m/s, $D_c$ : $34.469m^2/s$, $D_h$ : $0.1333m^2/s$. As a verification for the estimated parameters, the error of average peak flow was about 11 % and the error of peaktime was 0.3 hr. By examining the variability of parameters, the channel diffusion coefficient didn't have significant effect on hydrological response function. by considering these results, the model is expected to be simplified in the future.

Improvements to the Terrestrial Hydrologic Scheme in a Soil-Vegetation-Atmosphere Transfer Model (토양-식생-대기 이송모형내의 육지수문모의 개선)

  • Choi, Hyun-Il;Jee, Hong-Kee;Kim, Eung-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.529-534
    • /
    • 2009
  • Climate models, both global and regional, have increased in sophistication and are being run at increasingly higher resolutions. The Land Surface Models (LSMs) coupled to these climate models have evolved from simple bucket models to sophisticated Soil-Vegetation-Atmosphere Transfer (SVAT) schemes needed to support complex linkages and processes. However, some underpinnings of terrestrial hydrologic parameterizations so crucial in the predictions of surface water and energy fluxes cause model errors that often manifest as non-linear drifts in the dynamic response of land surface processes. This requires the improved parameterizations of key processes for the terrestrial hydrologic scheme to improve the model predictability in surface water and energy fluxes. The Common Land Model (CLM), one of state-of-the-art LSMs, is the land component of the Community Climate System Model (CCSM). However, CLM also has energy and water biases resulting from deficiencies in some parameterizations related to hydrological processes. This research presents the implementation of a selected set of parameterizations and their effects on the runoff prediction. The modifications consist of new parameterizations for soil hydraulic conductivity, water table depth, frozen soil, soil water availability, and topographically controlled baseflow. The results from a set of offline simulations are compared with observed data to assess the performance of the new model. It is expected that the advanced terrestrial hydrologic scheme coupled to the current CLM can improve model predictability for better prediction of runoff that has a large impact on the surface water and energy balance crucial to climate variability and change studies.

  • PDF

Application of Meteorological Drought Indices for North Korea (북한지역에 대한 기상학적 가뭄지수의 적용)

  • Nam, Won-Ho;Yoo, Seung-Hwan;Jang, Min-Won;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.3-15
    • /
    • 2008
  • North Korea is one of the vulnerable countries facing the threat of a drought, so that it is unavoidable to experience fatal damage when drought is occurred, and it is necessary to improve the drought response capability of water resources systems. However, it is still difficult to find research efforts for drought characteristics and drought management in North Korea. This study is to quantify drought duration and magnitude and to analyze drought characteristics in North Korea. In order to quantitatively identify historical drought conditions and to evaluate their variability, drought indices are commonly used. In this study, drought indices including dry-day index, deciles of normal precipitation, Phillips drought index, standardized precipitation index and Palmer drought severity index are calculated and compared monthly using the weather data for the twenty one meteorological stations in North Korea. The indices compared with the drought damage records that have reported from 1990 to present to understand how the indices can explain the drought. A comparative study was also conducted to evaluate the relative severity of the significant droughts occurred during 2000 and 2001 which were reported as the worst drought in North Korea. Drought indices calculated from this study demonstrated that those can be the effective tools in quantitatively evaluating drought severity and measures of drought. Thus it is recommended the distributed trend of drought be considered when the plan or measures for drought in North Korea are established.

The DOE Based Robust Design to Reduce the Brake Squeal Noise (실험계획법에 기반한 브레이크 스퀼 노이즈 저감을 위한 강건 설계)

  • Kwon, Seong-Jin;Kim, Mun-Sung;Lee, Bong-Hyun;Lee, Dong-Won;Bae, Chul-Yong;Kim, Chan-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.126-134
    • /
    • 2007
  • Although there has been substantial research on the squeal noise for the automotive brake system, robust design issues with respect to control factors equivalent to design variables in optimization, noise factors due to system uncertainties, and signal factors designed to accommodate a user-adjustable setting still need to be addressed. For the purpose, the robust design applied to the disk brake system has been investigated by DOE (Design of Experiments) based Taguchi analysis with dynamic characteristics. The specific goal of this methodology is to identify a design with linear signal-response relationship, and variability minimization. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. As the practical robust design to reduce the brake squeal noise, material properties of pad, disk, and backplate, thickness and geometry of pad are selected as control factors, material properties of pad and disk, and the contact stiffness have been considered as noise factors, and friction coefficient between pad and disk is chosen as a signal factor. Through the DOE based robust design, the signal-to-noise ratio and the sensitivity for each orthogonal array experiment have been analyzed. Also, it has been proved that the proposed robust design is effective and adequate to reduce the brake squeal noise.

Autonomic and Frontal Electrocortical Responses That Differentiate Emotions elicited by the Affective Visual Stimulation

  • Sohn, Jin-Hun;Lee, Kyung-Hwa;Park, Mi-Kyung;Eunhey Jang;Estate Sokhadze
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.15-25
    • /
    • 2000
  • Cardiac, respiratory, electrodermal and frontal (F3, F4) EEG responses were analyzed and compared during to slides of International Affective Picture System (IAPS) in the study on 42 students. Physiological responses during 20s of exposure to slides intended to elicit happiness (nurturant and erotic), sadness, disgust, surprise, fear or anger emotions were quite similar and were expressed in heart rate (HR) deceleration, decreased HR variability (HRV), specific SCR, increased non-specific SCR frequency (N-SCR), and EEG changes exhibited in theta increase, alpha-blocking and increased beta activity, and frontal asymmetry. However, some emotions demonstrated variations of the response magnitudes, enabling to differentiate some paris of emotions by several physiological parameters. The profiles showed higher magnitudes of HRV and EEG responses in exciting (i.e., erotic) and higher cardiac and respiratory responses in surprise. The most different pairs were exciting-surprise (by HR, HRV, theta, and alpha asymmetry), exciting-sadness (by theta, alpha, and alpha asymmetry), and exciting-fear (by HRV, theta, F3 alpha, and alpha asymmetry). Nurturant happiness yielded the least differentiation. Differences were found as well within negative emotions, e.g., anger-sadness were differentiated by HRV and theta asymmetry, while disgust-fear by N-SCR and beta asymmetry. Obtained results suggest that magnitudes of profiles of physiological variables differentiate emotions evoked by affective pictures, despite that the patterns of most responses were featured by qualitative similarity in given passive viewing context.

  • PDF

Development of the Electrodermal Activity Monitoring System for the Evaluation of Train Driver's Arousal State (기관사의 각성상태 평가를 위한 소형 피부전기활성도 측정 시스템 개발)

  • Lim, Min-Gyu;Lee, Young-Jae;Lee, Kang-Hwi;Kang, Seung-Jin;Kim, Kyeung-Nam;Park, Hee-Jung;Yang, Heui-Kyung;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1286-1293
    • /
    • 2014
  • Typically, studies through the simulation system have been progressed, because the evaluation of the driver's arousal state about the service of a actual train has risk of safety for the driver. When configured event same as the real in simulation system, the ability to cope with an accident situation may be the same each other. But the difference in the state of tension or arousal will occur. In this study, requested to cooperate with the railways in order to escape from these constraints, and the target of the experiment was to real engineer service. I was set about experiment when the train was stopped as safe as possible. As a result, the beta wave of EEG signals that representing complex calculations or anxiety is increased rapidly on the basis of a flag station from at the time of departure. The size of the electrodermal activity signal in response to movement of the body gave a noticeable. In terms of HRV, if the train approach a flag station gradually and the R-R interval is narrowed. So that the driver can be estimated as arousal state. In accordance with this study, if the quantitative standard of arousal state be based on the driver's biosignals will provide, it will be able to take advantage of development the system that would prevent train accidents caused by human error.