• Title/Summary/Keyword: response variability

Search Result 399, Processing Time 0.038 seconds

Association between Solar Variability and Teleconnection Index

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.149-157
    • /
    • 2019
  • In this study, we investigate the associations between the solar variability and teleconnection indices, which influence atmospheric circulation and subsequently, the spatial distribution of the global pressure system. A study of the link between the Sun and a large-scale mode of climate variability, which may indirectly affect the Earth's climate and weather, is crucial because the feedbacks of solar variability to an autogenic or internal process should be considered with due care. We have calculated the normalized cross-correlations of the total sunspot area, the total sunspot number, and the solar North-South asymmetry with teleconnection indices. We have found that the Southern Oscillation Index (SOI) index is anti-correlated with both solar activity and the solar North-South asymmetry, with a ~3-year lag. This finding not only agrees with the fact that El $Ni{\tilde{n}}o$ episodes are likely to occur around the solar maximum, but also explains why tropical cyclones occurring in the solar maximum periods and in El $Ni{\tilde{n}}o$ periods appear similar. Conversely, other teleconnection indices, such as the Arctic Oscillation (AO) index, the Antarctic Oscillation (AAO) index, and the Pacific-North American (PNA) index, are weakly or only slightly correlated with solar activity, which emphasizes that response of terrestrial climate and weather to solar variability are local in space. It is also found that correlations between teleconnection indices and solar activity are as good as correlations resulting from the teleconnection indices themselves.

Effects of soil-structure interaction and variability of soil properties on seismic performance of reinforced concrete structures

  • Mekki, Mohammed;Hemsas, Miloud;Zoutat, Meriem;Elachachi, Sidi M.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • Knowing that the variability of soil properties is an important source of uncertainty in geotechnical analyses, we will study in this paper the effect of this variability on the seismic response of a structure within the framework of Soil Structure Interaction (SSI). We use the proposed and developed model (N2-ISS, Mekki et al., 2014). This approach is based on an extension of the N2 method by determining the capacity curve of the fixed base system oscillating mainly in the first mode, then modified to obtain the capacity curve of the system on a flexible basis using the concept of the equivalent nonlinear oscillator. The properties of the soil that we are interested in this paper will be the shear wave velocity and the soil damping. These parameters will be modeled at first, as independent random fields, then, the two parameters will be correlated. The results obtained showed the importance of the use of random field in the study of SSI systems. The variability of soil damping and shear wave velocity introduces significant uncertainty not only in the evaluation of the damping of the soil-structure system but also in the estimation of the displacement of the structure and the base-shear force.

An Optimization Procedure for Robust Design (로버스트 설계에 대한 최적화 방안)

  • 권용만;홍연웅
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.4
    • /
    • pp.88-100
    • /
    • 1998
  • Robust design in industry is an a, pp.oach to reducing performance variation of quality characteristic value in products and processes. Taguchi has used the signal-to-noise raio(SN) to achieve the a, pp.opriate set of operating conditions where variablity around target is low in the Taguchi parameter design. Taguchi has dealt with having constraints on both the mean and variability of a characteristic (the dual response problem) by combining information on both mean and variability into an SN. Many Statisticians criticize the Taguchi techniques of analysis, particularly those based on the SN. In this paper we propose a substantially simpler optimization procedure for robust design to solve the dual response problems without resorting to SN. Two examples illustrate this procedure in the two different experimental design(product array, combined array) a, pp.oaches.

  • PDF

Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis - recent advances

  • Schueller, G.I.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.1-20
    • /
    • 2009
  • The present contribution addresses uncertainty quantification and uncertainty propagation in structural mechanics using stochastic analysis. Presently available procedures to describe uncertainties in load and resistance within a suitable mathematical framework are shortly addressed. Monte Carlo methods are proposed for studying the variability in the structural properties and for their propagation to the response. The general applicability and versatility of Monte Carlo Simulation is demonstrated in the context with computational models that have been developed for deterministic structural analysis. After discussing Direct Monte Carlo Simulation for the assessment of the response variability, some recently developed advanced Monte Carlo methods applied for reliability assessment are described, such as Importance Sampling for linear uncertain structures subjected to Gaussian loading, Line Sampling in linear dynamics and Subset simulation. The numerical example demonstrates the applicability of Line Sampling to general linear uncertain FE systems under Gaussian distributed excitation.

Occurred Seasick Impression and Analysis of the Observer´s Heart Rate Variability by using Ship´s Bridge Simulator

  • Kim, Kyung-Hwan;Keigo, Watanabe
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.168.3-168
    • /
    • 2001
  • The purpose of this paper is to find the relations between the virtual reality created by the ship´s bridge simulator (simulator) at Radar Navigation Experiment and Research Facility in Kobe University of Mercantile Marine (KUMM) and the observer´s response to it. In short, we analyze the observer´s heart rate variability (R-R interval) in navigational condition seasick impression by simulator occurred, and present the R-R Interval and the stress of observer with SNS and PNS calculated by STFT. In this experiment, rolling of the ship was simulated and presented to the observer. Rolling was simulated only visually not physically or mechanically while the balancing movement and heart beat of the observer were measured and processed to produce the measures for body response to the artificially created visual environment. The results show that even a ...

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spatial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triagulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triagular facets : the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally ; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

A Study of Autonomic Responses due to Vehicular Speed Changes (자동차 속도 변화에 따른 자율신경계의 반응 연구)

  • 김철중;민병찬;정순철;김상균;오지영;민병운;김유나
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.203-210
    • /
    • 1999
  • We report on some of the preliminary results of the physiological responses resulting from vehicular speed changes. Healthy human subjects (n=5) were studied for the experiments. We measured the physiological responses of the subjects such as Heart Rate Variability (HRV), Galvanic Skin Response (GSR), and skin temperature for day and night vehicular speed change experiments, respectively. Before and after the tasks, we carried out a self-report for acquiring correlation with experiment results. Mean heart rate variability (HRV) and amplitude of GSR and skin temperature were calculated for 3 minutes duration in each state. The analysis of the physiological measures of ANS activity revealed that vehicle speed change-based affective state evoked arousal response pattern featured by HR acceleration, decrease of skin temperature, and increase of GSR amplitude. The obtained results show that despite some differences observed between each state, overall physiological responses show that the activity of the sympathetic nervous system increases as a result of the increase of speed.

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spacial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triangulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triangular facets: the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Multiresponse Optimization Using a Response Surface Approach to Taguchi′s Parameter Design (다구찌의 파라미터 설계에 대한 반응표면 접근방법을 이용한 다반응 최적화)

  • 이우선;이종협;임성수
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.1
    • /
    • pp.165-194
    • /
    • 1999
  • Taguchi's parameter design seeks proper choice of levels of controllable factors (Parameters in Taguchi's terminology) that makes the qualify characteristic of a product optimal while making its variability small. This aim can be achieved by response surface techniques that allow flexibility in modeling and analysis. In this article, a collection of response surface modeling and analysis techniques is proposed to deal with the multiresponse optimization problem in experimentation with Taguchi's signal and noise factors.

  • PDF