• Title/Summary/Keyword: respiratory pathogenesis

Search Result 263, Processing Time 0.026 seconds

A Case of Paradoxical Vocal Fold Movement with Severe Respiratory Distress (심한 호흡곤란을 동반한 역설성성대운동 1예)

  • Park, Jun Woo;Kim, Ji Won;Lim, Chae-Man;Choi, Seung-Ho
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.26 no.1
    • /
    • pp.51-53
    • /
    • 2015
  • Paradoxical vocal fold movement (PVFM) is characterized by aberrant vocal fold adduction. Although the exact pathogenesis is unknown, botulinum toxin injection, behavioral techniques, including speech therapy, bio-feedback, and cognitive-behavioral psychotherapy are considered for treatment of PVFM. The effectiveness of these treatments is not fully evaluated because of the rarity of disease. We present a case of 16-year-old female with sudden onset of respiratory distress associated with PVFM refractory to several treatments and spontaneously resolved later.

  • PDF

Recent Advances in Molecular Basis of Lung Aging and Its Associated Diseases

  • Kang, Min-Jong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.83 no.2
    • /
    • pp.107-115
    • /
    • 2020
  • Aging is often viewed as a progressive decline in fitness due to cumulative deleterious alterations of biological functions in the living system. Recently, our understanding of the molecular mechanisms underlying aging biology has significantly advanced. Interestingly, many of the pivotal molecular features of aging biology are also found to contribute to the pathogenesis of chronic lung disorders such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, for which advanced age is the most crucial risk factor. Thus, an enhanced understanding of how molecular features of aging biology are intertwined with the pathobiology of these aging-related lung disorders has paramount significance and may provide an opportunity for the development of novel therapeutics for these major unmet medical needs. To serve the purpose of integrating molecular understanding of aging biology with pulmonary medicine, in this review, recent findings obtained from the studies of aging-associated lung disorders are summarized and interpreted through the perspective of molecular biology of aging.

Interstitial Lung Disease and Diffuse Alveolar Hemorrhage, the Two Key Pulmonary Manifestations in Microscopic Polyangiitis

  • Kim, Min Jung;Shin, Kichul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.4
    • /
    • pp.255-262
    • /
    • 2021
  • Microscopic polyangiitis (MPA) is an antineutrophil cytoplasmic antibody (ANCA)-associated necrotizing vasculitis, which mainly affects small vessels in various organs, especially the lungs. The two key pulmonary manifestations, interstitial lung disease (ILD) and diffuse alveolar hemorrhage (DAH), increase the morbidity and death rate of patients with MPA. ILD is more common in MPA than in other ANCA-associated vasculitis subsets and is primarily associated with myeloperoxidase-ANCA. Unlike alveolar hemorrhage due to pulmonary capillaritis, ILD can initially manifest as isolated pulmonary fibrosis. Of note, its most frequent radiographic pattern is the usual interstitial pneumonia pattern, similar to the characteristic pattern seen in idiopathic pulmonary fibrosis. In this review we present the pathogenesis, clinical manifestations, and radiographic and histopathologic features of ILD and DAH in MPA. We also briefly summarize the outcome and therapeutic options for the two conditions.

Tailored Biologics Selection in Severe Asthma

  • Sang Hyuk Kim;Youlim Kim
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.1
    • /
    • pp.12-21
    • /
    • 2024
  • The management of severe asthma presents a significant challenge in asthma treatment. Over the past few decades, remarkable progress has been made in developing new treatments for severe asthma, primarily in the form of biological agents. These advances have been made possible through a deeper understanding of the underlying pathogenesis of asthma. Most biological agents focus on targeting specific inflammatory pathways known as type 2 inflammation. However, recent developments have introduced a new agent targeting upstream alarmin signaling pathways. This opens up new possibilities, and it is anticipated that additional therapeutic agents targeting various pathways will be developed in the future. Despite this recent progress, the mainstay of asthma treatment has long been inhalers. As a result, the guidelines for the appropriate use of biological agents are not yet firmly established. In this review, we aim to emphasize the current state of biological therapy for severe asthma and provide insights into its future prospects.

Transcriptional Responses of Respiratory Epithelial Cells to Nontypable H. influenzae Infection: Identification of Differentially Regulated Genes by Microarray Analysis of Human cDNA

  • Lee, Na-Gyong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.151-152
    • /
    • 2002
  • Bacterial infection is a very complex process in which both pathogenic microorganisms and host cells play crucial roles, and it is the outcome of interactions between the two participants. To elucidate the bacterial pathogenesis mechanisms, therefore, it is essential to understand the cellular and systemic responses of the host as well as the virulence factors of the pathogen. Infection of a host by pathogenic bacteria causes drastic changes in the physiology of host cells, leading to activation of a program of various gene expression. (omitted)

  • PDF

A Case of Miller Fisher Syndrome (Miller Fisher 증후군 1례에 대한 임상적 고찰)

  • 정은정;최동준;고창남;조기호;김영석;배형섭;이경섭
    • The Journal of Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.98-105
    • /
    • 2000
  • Miller Fisher syndrome is characterized by acute external ophthalmoplegia, ataxia and areflexia in the abscence of significant motor or sensory deficit in the limbs and usually results in a complete recovery. Most cases have anteceding events like upper respiratory infection or other viral infections. Its accurate anatomic lesion sites and pathogenesis is still unknown. Recently we experienced a 47 year-old man who had a sudden onset of complete total ophthalmoplegia, ataxia, diplopia and whose condition was improved through Oriental medical treatment.

  • PDF

The Effect of Tumor Necrosis Factor (TNF) on Gene Expression of Surfactant Protein A, B, and C (Tumor Necrosis Factor가 Surfactant Protein A, B, C의 유전자 발현에 미치는 영향에 관한 실험적 연구)

  • Choi, Jin-Won;Sohn, Jang-Won;Yang, Seok-Chul;Yoon, Ho-Joo;Shin, Dong-Ho;Park, Sung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.4
    • /
    • pp.513-521
    • /
    • 2000
  • Background : TNF may play an important role(central mediator) in the development of an acute respiratory distress syndrome. Since TNF induced lung injury in the acute respiratory distress syndrome and abnormalities in surfactant function have been described in acute respiratory distress syndrome, the authors investigated the effects of TNF on the regulation of surfactant protein A, B and C mRNA accumulation. Methods : The effects of TNF on gene expression of surfactant protein A, B, and C were analyzed using filter hybridization, 12 and 24 hours after intravenous injection of TNF in rats. Results : 1. The accumulation of SP-A mRNA in the TNF treated group (12 and 24 hours after TNF injection) was significantly decreased by 22.9% and 27.4%, respectively, compared to the control group (P<.025, P<.025). 2. The accumulation of SP-B mRNA in 24 hours after TNF treated group was significantly decreased by 20.5% compared to that of the control group(P<.01). 3. The accumulation of SP-C mRNA in 12 hours after TNF treated group was significantly decreased by 31% the compared to that of the control group(P<.01). Conclusions : These findings indicate the marked inhibitory effects of tumor necrosis factor on surfactant proteins expression in vivo. This finding. in turn, supports the idea of inhibitory effects of tumor necrosis factor on surfactant proteins expression as it relates to pathogenesis of acute respiratory distress syndrome.

  • PDF

Human Pluripotent Stem Cell-Derived Alveolar Organoids: Cellular Heterogeneity and Maturity

  • Ji-Hye Jung;Se-Ran Yang;Woo Jin Kim;Chin Kook Rhee;Seok-Ho Hong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.1
    • /
    • pp.52-64
    • /
    • 2024
  • Chronic respiratory diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and respiratory infections injure the alveoli; the damage evoked is mostly irreversible and occasionally leads to death. Achieving a detailed understanding of the pathogenesis of these fatal respiratory diseases has been hampered by limited access to human alveolar tissue and the differences between mice and humans. Thus, the development of human alveolar organoid (AO) models that mimic in vivo physiology and pathophysiology has gained tremendous attention over the last decade. In recent years, human pluripotent stem cells (hPSCs) have been successfully employed to generate several types of organoids representing different respiratory compartments, including alveolar regions. However, despite continued advances in three-dimensional culture techniques and single-cell genomics, there is still a profound need to improve the cellular heterogeneity and maturity of AOs to recapitulate the key histological and functional features of in vivo alveolar tissue. In particular, the incorporation of immune cells such as macrophages into hPSC-AO systems is crucial for disease modeling and subsequent drug screening. In this review, we summarize current methods for differentiating alveolar epithelial cells from hPSCs followed by AO generation and their applications in disease modeling, drug testing, and toxicity evaluation. In addition, we review how current hPSC-AOs closely resemble in vivo alveoli in terms of phenotype, cellular heterogeneity, and maturity.

Mitochondrial Location of Severe Acute Respiratory Syndrome Coronavirus 3b Protein

  • Yuan, Xiaoling;Shan, Yajun;Yao, Zhenyu;Li, Jianyong;Zhao, Zhenhu;Chen, Jiapei;Cong, Yuwen
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.186-191
    • /
    • 2006
  • Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondriaspecific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.

Concise Clinical Review of Hematologic Toxicity of Linezolid in Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis: Role of Mitochondria

  • Oehadian, Amaylia;Santoso, Prayudi;Menzies, Dick;Ruslami, Rovina
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.2
    • /
    • pp.111-121
    • /
    • 2022
  • Multidrug-resistant tuberculosis (MDR-TB) is caused by an organism that is resistant to both rifampicin and isoniazid. Extensively drug-resistant TB, a rare type of MDR-TB, is caused by an organism that is resistant to quinolone and one of group A TB drugs (i.e., linezolid and bedaquiline). In 2018, the World Health Organization revised the groupings of TB medicines and reclassified linezolid as a group A drug for the treatment of MDR-TB. Linezolid is a synthetic antimicrobial agent in the oxazolidinone class. Although linezolid has a good efficacy, it can cause substantial adverse events, especially hematologic toxicity. In both TB infection and linezolid mechanism of action, mitochondrial dysfunction plays an important role. In this concise review, characteristics of linezolid as an anti-TB drug are summarized, including its efficacy, pathogenesis of hematologic toxicity highlighting mitochondrial dysfunction, and the monitoring and management of hematologic toxicity.