• 제목/요약/키워드: respect model

검색결과 2,848건 처리시간 0.028초

MCDM 모델을 이용한 재활용 제조부품 관리 (Management of Recycling-Oriented Manufacturing Components Based on an MCDM Model)

  • 신완선;오현주
    • 대한산업공학회지
    • /
    • 제22권4호
    • /
    • pp.589-605
    • /
    • 1996
  • Recycling of used products and components has been considered as one of promising strategies for resolving environmental problems. In this respect, most manufacturing companies begin to consider possible recycling (e.q., reuse or re-production) of the components contained in their products. The primary objective of this research is to develop a multiple criteria decision making model for systematic management of recycle-oriented manufacturing components. The production planning problem of recycle-oriented manufacturing components is first formulated as a multiobjective mixed 0-1 integer programming model with three conflicting objectives. An interactive multiple criteria decision making method is then developed for solving the mathematical model. Also, an Input/Output analysis software is developed to help practitioners apply the model to real problems without much knowledge on computers and mathematical programming. A numerical example is used in examining the validity of the proposed model and to investigate the impact of the input variables on recycling production strategy.

  • PDF

Calculation of eigenvalue and eigenvector derivatives with the improved Kron's substructuring method

  • Xia, Yong;Weng, Shun;Xu, You-Lin;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.37-55
    • /
    • 2010
  • For large-scale structures, the calculation of the eigensolution and the eigensensitivity is usually very time-consuming. This paper develops the Kron's substructuring method to compute the first-order derivatives of the eigenvalues and eigenvectors with respect to the structural parameters. The global structure is divided into several substructures. The eigensensitivity of the substructures are calculated via the conventional manner, and then assembled into the eigensensitivity of the global structure by performing some constraints on the derivative matrices of the substructures. With the proposed substructuring method, the eigenvalue and eigenvector derivatives with respect to an elemental parameter are computed within the substructure solely which contains the element, while the derivative matrices of all other substructures with respect to the parameter are zero. Consequently this can reduce the computation cost significantly. The proposed substructuring method is applied to the GARTEUR AG-11 frame and a highway bridge, which is proved to be computationally efficient and accurate for calculation of the eigensensitivity. The influence of the master modes and the division formations are also discussed.

유한요소 구조 인자의 2차 민감도에 의한 동적 구조 최적화 (Structural Dynamics Optimization by Second Order Sensitivity with respect to Finite Element Parameter)

  • 김용연
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.8-16
    • /
    • 2006
  • This paper discusses design sensitivity analysis and its application to a structural dynamics modification. Eigenvalue derivatives are determined with respect to the element parameters, which include intrinsic property parameters such as Young's modulus, density of the material, diameter of a beam element, thickness of a plate element, and shape parameters. Derivatives of stiffness and mass matrices are directly calculated by derivatives of element matrices. The first and the second order derivatives of the eigenvalues are then mathematically derived from a dynamic equation of motion of FEM model. The calculation of the second order eigenvalue derivative requires the sensitivity of its corresponding eigenvector, which are developed by Nelson's direct approach. The modified eigenvalue of the structure is then evaluated by the Taylor series expansion with the first and the second derivatives of eigenvalue. Numerical examples for simple beam and plate are presented. First, eigenvalues of the structural system are numerically calculated. Second, the sensitivities of eigenvalues are then evaluated with respect to the element intrinsic parameters. The most effective parameter is determined by comparing sensitivities. Finally, we predict the modified eigenvalue by Taylor series expansion with the derivatives of eigenvalue for single parameter or multi parameters. The examples illustrate the effectiveness of the eigenvalue sensitivity analysis for the optimization of the structures.

Square footing on geocell reinforced cohesionless soils

  • Biswas, Sefali;Mittal, Satyendra
    • Geomechanics and Engineering
    • /
    • 제13권4호
    • /
    • pp.641-651
    • /
    • 2017
  • Ground improvement with use of geosynthetic products is globally accepted now. The present paper discusses the improvement in bearing capacity of square footing placed at surface of cohesionless soil reinforced with geocell. Mohr-Coulomb failure criterion has been used in the observations. To study effects of geocell with respect to planar geogrid, model tests were conducted on planar reinforcement also. A comparative study of unreinforced soil and soil reinforced with plane geogrid and geocell has also been made. Numerical analysis results obtained by PLaxis have been compared with those obtained from model tests and were found to be in good agreement. A parametric study revealed the role of length of reinforcement, spacing between layers, placement of reinforcement from top surface etc. on bearing capacity. A design example given in paper illustrates the savings in cost of construction of footing on reinforced sand. The study shows that there is improvement in bearing capacity with respect to unreinforced soil which is of the order of 86%. Similarly settlement reduction is 13.07% for single layer of geocell which for double layers of geocell is 693% and 86.48% respectively. The cost reduction in case of reinforced soil is 35% as compared to unreinforced soil.

우리 나라 바다목장화 사업의 예비적 경제성 평가 (Preliminary Evaluation of a Proposed Marine Ranching Project in Korea)

  • 표희동
    • 수산경영론집
    • /
    • 제29권2호
    • /
    • pp.199-216
    • /
    • 1998
  • An economic appraisal of a proposed marine ranching project is analysed using capital budgeting model such as net present value(NPV) and internal rate of return( IRR) as well as sensitivity analysis and goal seeking model. Of the factors for economic appraisal, direct benefits are to be determined by estimated harvest, prices and costs incurred by catching fishes, and indirect benefits include the additional economic effect of recreational fishing. And judging the worth of these project options depends upon the choice of discount rate of which 8.5% is recommended here. On the basis of estimated production, prices and costs the project is expected to yield NPV=615 million won and IRR=8.8%, which is quite accepted for an economic feasibility, under the first scenario, and NPV= -127 million won and IRR=7.93%, which is rejected, under the second scenario. Sensitivity analysis has been performed by calculating the switching value and sensitivity indicator in respect of the main project parameters. The results suggest that the project NPV and IRR are especially sensitive to fishes(rock fish and other rock fish) prices and fixed costs. Finally goal seeking analysis is carried out in order to reach a desired level of performance like NPV=0 in respect of the amount of hatchery-reared juverniles, the prices and the discount rate.

  • PDF

점성 유체 감쇠기의 크기 변화에 따른 성능 변화 예측 (Prediction of the Ability of a Viscous Fluid Damper with Respect to Change of the Size of the Damper)

  • 박화용;윤종민;유성환;김창열;이재응
    • 한국소음진동공학회논문집
    • /
    • 제22권1호
    • /
    • pp.53-60
    • /
    • 2012
  • To reduce the vibration in industrial settings, the viscous fluid dampers have been widely used. Since the damper shows a viscoelastic behavior, many methods to predict the behavior have been investigated. But the methods did not consider a change of damper size that is important factor for practical design engineer. In this study, to predict a change of damper ability with respect to a change of damper size, the dynamic experiment were conducted with fixed aspect ratio and gap. The damping coefficient at zero frequency was computed through theoretical and experiment approach in order to fit the experimental results using fractional derivative Maxwell model.

스웨이징 행정에 따른 고압호스의 변형 특성에 관한 연구 (A Study on the Deformation Characteristics of a High-Pressure Hose with respect to the Swaging Strokes)

  • 김병탁;김형제
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.37-42
    • /
    • 2003
  • The mechanical components with high-pressure hoses are generally produced by the swaging process. The hoses are composed of the rubber materials and the reinforced braids to support tensile forces. In case they are subjected to high mechanical and thermal loads under severe operating conditions, the oil in hoses can leak at the parts of small clamping forces. In this paper, the deformation characteristics of a fiber-reinforced hose are analyzed with respect to the jaw strokes using the finite element method. The manufacturing process is modeled with a contact problem in consideration of a real situation, and the material properties based on the experimental results are used in the analysis. Examinations of the relationship between the swaging strokes and the deformation behaviors of the hose were made on the basis of the stress and strain values of the hose components. The relations between clamping forces and separating forces are also proposed, in order to estimate clamping forces corresponding to separating forces for the given model.

해양 퇴적물에서 인 용출 차단을 위한 반응성 피복 소재로서 제강슬래그의 적용성 검토 (Applicability Assessment of Steel Slag as Reactive Capping Material for Blocking Phosphorus Release from Marine Sediment)

  • 조성욱;박성직
    • 한국농공학회논문집
    • /
    • 제56권3호
    • /
    • pp.11-17
    • /
    • 2014
  • We investigated the applicability of steel slag as a capping material in order to minimize phosphorus(P) release into seawater. Steel slag is a byproduct from the iron and steel industries and the use of steel slag has some advantages in respect of both cost and environmental concern. P removal by steel slag were studied in a batch system with respect to changes in contact time and initial concentration. Kinetic adsorption data were described well by pseudo 2nd order model, indicating rate limiting step for P adsorption to steel slag is chemical sorption. Equilibrium adsorption data fitted well to Langmuir isotherm model which describes for single layer adsorption. The maximum P adsorption capacity of steel slag was 7.134 mg-P/L. Increasing the depth of steel slag produced a positive effect on interruption of P release. More than 3 cm of steel slag was effective for blocking P release and 5 cm of steel slag was recommended as the depth for capping of P contaminated marine sediments. Increasing P concentration and flow rate had a negative effect on P removal ratio. It was concluded that the steel slag has a potential capping material for blocking P release from marine sediments.

Finite element model for the long-term behaviour of composite steel-concrete push tests

  • Mirza, O.;Uy, B.
    • Steel and Composite Structures
    • /
    • 제10권1호
    • /
    • pp.45-67
    • /
    • 2010
  • Composite steel-concrete structures are employed extensively in modern high rise buildings and bridges. This concept has achieved wide spread acceptance because it guarantees economic benefits attributable to reduced construction time and large improvements in stiffness. Even though the combination of steel and concrete enhances the strength and stiffness of composite beams, the time-dependent behaviour of concrete may weaken the strength of the shear connection. When the concrete loses its strength, it will transfer its stresses to the structural steel through the shear studs. This behaviour will reduce the strength of the composite member. This paper presents the development of an accurate finite element model using ABAQUS to study the behaviour of shear connectors in push tests incorporating the time-dependent behaviour of concrete. The structure is modelled using three-dimensional solid elements for the structural steel beam, shear connectors, concrete slab and profiled steel sheeting. Adequate care is taken in the modelling of the concrete behaviour when creep is taken into account owing to the change in the elastic modulus with respect to time. The finite element analyses indicated that the slip ductility, the strength and the stiffness of the composite member were all reduced with respect to time. The results of this paper will prove useful in the modelling of the overall composite beam behaviour. Further experiments to validate the models presented herein will be conducted and reported at a later stage.

선저 스텝개수에 따른 고속 활주형선의 저항특성 비교 (Comparisons of Resistance Characteristics of the High-speed Planing Craft with Respect to the Number of Bottom Steps)

  • 박충환
    • 한국항해항만학회지
    • /
    • 제32권8호
    • /
    • pp.583-588
    • /
    • 2008
  • 활주형선은 고속 운항시 선저에 동적압력을 발생시켜 선체를 부상시킴으로서 저항이 감소하게 되어 고속의 항주가 가능하게 된다. 일반적으로 선저에 스텝을 적용한 선형은 일체형 활주형선에 비하여 고속 주행시 선저 공기공급에 따른 접수면 감소로 인하여 전체저항 감소에 따른 속도향상과 연비절감 효과가 있다. 본 논문에서는 고속 선형시험이 가능한 실 해역모형시험을 이용하여 선저 스텝개수에 따른 고속 Stepped Hull 선형의 저항성능을 비교, 분석하였다. 시험결과, 2개의 스텝을 가지는 선형이 최소저항 선형임을 확인할 수 있었다.