• 제목/요약/키워드: resources process & metallurgical technology

Search Result 16, Processing Time 0.02 seconds

Recovery of $\alpha$-iron from converter dust in a steel making factory -Utilization of the converter dust in a steel making factory- (제장소 전노 dust로부터 $\alpha$-장분말 회수에 관한 연구(II) -전노 dust의 이용에 관한 연구-)

  • Kim, Mi-Sung;Kim, Mahn;Cho, Moung-Ho;Oh, Jae-Hyun;Kim, Tae-Dong;Kim, Sung-Wan
    • Resources Recycling
    • /
    • v.3 no.2
    • /
    • pp.9-16
    • /
    • 1994
  • In this study, the grinding and wet cyclone process of the dust for the effective separation of high purity iron powder and iron oxide were investigated. The results obtained in this study can be summarized as follows: 1. By applying the wet cyclone technique for the iron powder(+200 mesh) produced from EC dust of the Kwangyang 2nd steel making factory, the iron powder of high content more than 99.76% of Fe was obtained with 47.66% yield at grinding time of 5 minutes by attritor. 2. The particle size distribution of the iron powder recovered from converter dust is quite simillar with the iron powder of sweden Hoganas Co.(W40.24, W40.29, W40.37, W40.37OX). 3. By using iron powder, copper ions are all adsorbed and removed in any concentration ranges of copper sulfate solution(Cu:100, 200, 300, 600 ppm).

  • PDF

Fine Particle Classification and Dewatering of Tailing Using Hydrocyclone (습식사이클론을 이용한 광물찌꺼기의 정밀분급과 탈수)

  • Kim, Jonggeol;Yoo, Kyoungkeun;Choe, Hongil;Choi, Uikyu;Park, Jayhyun;Alorro, Richard Diaz
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.56-60
    • /
    • 2015
  • Fine particle classification was performed using products obtained from primary classification process after flotation for efficient application of tailing. The cut size increased with decreasing input pressure from 0.1 MPa to 0.3 MPa and increasing pulp density from 5% to 15% using 2-inch hydrocyclone. The median sizes of overflow and underflow were $6.56{\mu}m$ and $55.45{\mu}m$, respectively at 0.3 MPa with 5% pulp density. The imperfection became closed to ideal separation with increasing the pulp density and decreasing the input pressure. The water content decreased with increasing the pulp density, but the effect of input pressure could be ignored. The water content of underflow was 27.9% at 0.3 MPa with 15% pulp density.

Fabrication of Fe Foam using Slurry Coating Process (슬러리 코팅 공정을 이용한 Fe 폼의 제조에 대한 연구)

  • Yun, Jung-Yeul;Park, Dahee;Yang, Sangsun;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.97-101
    • /
    • 2017
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open pores which are penetrable pores are necessary for industrial applications such as in high temperature filters and as support for catalysts. In this study, Fe foam with greater than 90% porosity and 2-mm pore size was successfully fabricated using a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foam samples with different pore sizes and porosity. First, the slurry was prepared through the uniform mixing of powders, distilled water, and polyvinyl alcohol(PVA). The amount of slurry coated with the PU foam increased with increasing $Fe_2O_3$ mixing powder ratio, but the shrinkage and porosity of the Fe foams decreased, respectively, with increasing $Fe_2O_3$ mixing powder ratio.

Study on the Copper Electro-refining from Copper Containing Sludge (저품위 동(Cu) 함유 슬러지로부터 동 전해정련에 관한 연구)

  • Lee, Jin-Yeon;Son, Seong Ho;Park, Sung Cheol;Jung, Yeon Jae;Kim, Yong Hwan;Han, Chul Woong;Lee, Man-seung;Lee, Ki-Woong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.84-90
    • /
    • 2017
  • The electro-refining process was performed to recovery high purity copper from low grade copper containing sludge in sulfuric acid. The surface morphologies and roughness of electro-refining copper were analyzed with variation of the type and concentration of organic additives, the best surface morphology was obtained 5 ppm of the gelatin type and 5 to 10 ppm of the thiol type organic additive. The crude metal consisted of copper with 86.635, 94.969 and 99.917 wt.%, several impurity metals of iron, nickel, cobalt and tin by pyro-metallurgical process. After electro-refining process, the purity of copper increases to 3N or 4N grade. The impurity concentrations and copper purities of copper crude metals, electrolyte and electro-refining copper were analyzed using ICP-OES, the electro-refining time and purity of copper crude metal to recover 4N grade copper were deduced.

Influence of Droplet Size and Oil Viscosity on the Descending Velocity of Droplets Using Water Model With and Without Stirring (교반 유무에 따른 수모델을 사용한 액적의 하강 속도에 대한 액적 크기 및 오일 점도의 영향)

  • Hyeok-In Kwon;Alberto Conejo;Sung Yong Jung;Sun-Joong Kim
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Metal emulsions have been studied for several decades as a method of increasing the efficiency of the steelmaking process. This study was performed using a water model, observable at room temperature, to compensate for the disadvantages of the high-temperature experiment, the results of which are difficult to observe visually. As a substitute for metal-in-slag emulsions, experiments were conducted by dropping distilled water into silicone oil and comparing the results with the results of a calculation by momentum balance equations. The descending velocity of the water droplet decreased as the diameter of the droplet and viscosity of the fluid (silicon oil) increased. To simulate the descending velocity of a water droplet in silicon oil under stirring conditions, the flow rate of the fluid (silicon oil) was measured by particle image velocimetry (PIV) methods. The calculation of the descending velocity of the water droplet was in good agreement with the measured values, with and without stirring a viscous silicone oil.

Silicon purification through acid leaching and unidirectional solidification (산처리와 일방향 응고를 이용한 실리콘 정제)

  • Eum, Jung-Hyun;Chang, Hyo-Sik;Kim, Hyung-Tae;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.232-236
    • /
    • 2008
  • Recently the shortage of silicon resources especially for poly-silicon of purity higher than 99.9999% leads to search for the more cheap and quick synthesizing routes for silicon feedstock. In order to solve this situation, we investigated the purification process of metallurgical grade (MG) silicon of purity around 99% by the acid leaching and following the unidirectional solidification. MG-Si lumps are pulverized with a planetary mill, and then leached with HCl/$HNO_3$/HF acid solution. As a result, the concentration of metal impurities including Al, Fe, Ca, Mn, etc. decreased dramatically. This process led to silicon content higher than 99.99%. The purified silicon powders were compacted and have been melted and uni-directionally solidified with heat exchange method (HEM) furnace. The properties of multicrystalline silicon ingots were specific resistance of $0.3{\Omega}{\cdot}cm$ and minority carrier life time (MCLT) of $3.8{\mu}{\cdot}sec$.