• Title/Summary/Keyword: resources evaluation

Search Result 4,520, Processing Time 0.028 seconds

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

Characteristic evaluation of anaerobic co-digestion using desulfurization sludge and primary sludge (탈황슬러지 및 생슬러지를 이용한 혐기성 병합소화 특성평가)

  • Seulki Koo;Woojin Chung;Soonwoong Chang;Myoungsoo Park
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.51-58
    • /
    • 2023
  • In this study, anaerobic co-digestion was carried out using desulfurization sludge and sewage sludge (primary sludge) to evaluate the effects of sulfur compounds in anaerobic digestion. The experiment was carried out in the form of a batch test using 500 mL duran bottle, and the mixing ratio of the feedstock was selected based on the ratio of COD/SO4. As a result of the experiment, it was confirmed that the amount of biogas generated and the yield decreased at the mixing ratio of COD/SO4 20 or less. In particular, below COD/SO4 10, it was lower than seed (283.5 mL) which was set without feedstock to correct biogas generated by itself from seed sludge. Methane yield tended to decrease from a ratio of COD/SO4 20 or less to 0.135 m3/kg VS compared to 0.396 m3/kg VS of COD/SO4 50. In addition, compared to 0.0097 m3/kg VS of hydrogen sulfide yield from COD/SO4 50, the ratio of COD/SO4 20 increased sharply to 0.0223 m3/kg VS, and in particular, the highest result was 0.0855 m3/kg VS in COD/SO4 10. Based on these results, it is judged that the effect of sulfide in anaerobic digestion can have an adverse effect if the COD/SO4 ratio decreases to less than 20.

Applicability evaluation of GIS-based erosion models for post-fire small watershed in the wildland-urban interface (WUI 산불 소유역에 대한 GIS 기반 침식모형의 적용성 평가)

  • Shin, Seung Sook;Ahn, Seunghyo;Song, Jinuk;Chae, Guk Seok;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.421-435
    • /
    • 2024
  • In April 2023, a wildfire broke out in Gangneung located in the east coast region due to the influence of the Yanggang-local wind. In this study, GIS-based RUSLE(Revised Universal Soil Loss Equation) and SEMMA (Soil Erosion Model for Mountain Areas) were used to evaluate the erosion rate due to vegetation recovery in a small watershed of the Gangneung WUI(Wildland-Urban Interface) fire. The small watershed of WUI fire has a low altitude range of 10-30 m and the average slope of 10.0±7.4° which corresponds to a gentle slope. The soil texture was loamy sand with a high organic content and the deep soil depth. As herbaceous layer regenerated profusely in the gully after the wildfire, the NDVI (Normalized Difference Vegetation Index) reached a maximum of 0.55. Simulation results of erosion rates showed that RUSLE ranged from 0.07-94.9 t/ha/storm and SEMMA ranged from 0.24-83.6 t/ha/storm. RUSLE overestimated the average erosion rate by 1.19-1.48 times compared to SEMMA. The erosion rates were estimated to be high in the middle slope where burned pine trees were widely distributed and the slope was steep and to be relatively low in the hollow below the gully where herbaceous layer recovers rapidly. SEMMA showed a rapid increase in erosion sensitivity under at certain vegetation covers with NDVI below 0.25 (Ic = 0.35) on post-fire hillslopes. Gentle slopes with high organic content and rapid recovery of natural vegetation had relatively low erosion rate compared to steep slopes. As subsequent infrastructure and human damages due to sediment disaster by heavy rain is anticipated in WUI fire areas, the research results may be used as basic data for targeted management and decision making on the implementation of emergency treatment after the wildfire.

Communities' Perception of the Effect of Ecosystem Services on the Forest Rehabilitation of Abandoned Mine Areas: A Case Study in Taebaek-si and Jeongseon-gun (강원도 폐광산 산림복구지의 지역사회 생태계서비스 인식조사: 태백시 및 정선군을 중심으로)

  • Bohwi Lee;Dawou Joung;Jihye Kim;Gwan-in Bak;Hakjun Rhee
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.118-130
    • /
    • 2024
  • Rehabilitation of mining areas can reduce damage to ecosystems. However, the effects of rehabilitation on ecosystem services (ESs) and its contribution to local communities are not well known. Thus, the aims of this study were to clearly identify the ES beneficiaries affected by mining activities, to determine how the beneficiaries profit from surrounding areas in cooperation with local stakeholders, and to manage the rehabilitation areas for the ESs that the beneficiaries want. This study chose 18 ESs (4 provisioning, 7 regulating, 5 cultural, and 2 habitat services) based on The Economics of Ecosystems and Biodiversity. A semi-structured questionnaire survey using an 11-point Likert scale was conducted among 87 community residents to investigate social awareness and identify key ESs. The survey results from two local communities showed high awareness and demands mainly on cultural (mental and physical health, aesthetic appreciation, and recreation) and regulating services (local climate and air quality, and moderation of extreme events). These services were related to the daily lives of residents in local communities, provided positive benefits, and potentially improved the residents' future livelihoods. However, the average questionnaire scores were limited to 6-7 points, indicating that the benefits to local communities were meager. The residents' awareness of provisioning service was negative, even if it provided goods and profit opportunities. This indicated a disconnection between local communities and provisioning services due to forest rehabilitation that did not consider local communities that traditionally relied on specific provisioning services before the onset of mining activities. Future forest rehabilitation in abandoned mine areas must consider the welfare of local communities for sustainable use of rehabilitated forests and enhancing ESs. In this study, only a qualitative evaluation based on frequency analyses was conducted. The quantification and valuation of key ESs are warranted in the future to promote ESs from forest rehabilitation in abandoned mine areas. The study results would be useful for developing site-specific ES promotion strategies for reforesting mine areas.

Analysis of water quality changes in the mainstream and major tributaries of the Youngsan River by AR6 climate change scenario with SWAT (SWAT을 이용한 AR6 기후변화 시나리오에 의한 영산강 및 주요 지천 수질 변화 분석)

  • Lee, Seungmoon;Lee, Eojin;Lee, Jihyung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.10
    • /
    • pp.741-755
    • /
    • 2024
  • This study was conducted to predict and analyze water quality changes due to climate change using the SWAT (Soil and Water Assessment Tool) model for the main stream and major tributaries of the Yeongsan River Basin. To enhance the reliability of the model, input data was constructed using weather and flow data provided by the government from 2007 to 2021, and the model was calibrated. The mid-emission scenario (SSP2-4.5) and extreme emission scenario (SSP5-8.5), derived using the WRF climate change model from the 6th IPCC report, were applied to SWAT to predict flow and nutrient loads. The water quality changes under future climate change scenarios were analyzed by categorizing them into short-term (2021-2040), mid-term (2041-2060), and long-term (2081-2100) periods. Water quality assessments were conducted based on the Living Environment Standards and the Real-Time Water Quality Index (RTWQI). As a result, in most areas of the Yeongsan River Basin, the concentration of TN was found to be at or above the "Poor" level, with the "Very Poor" level being predominant, especially in the main stream and downstream areas. While the concentration of TP showed some variation depending on the scenario, it exhibited a trend of improvement over the long term. The RTWQI assessment generally showed higher water quality levels compared to the evaluation based on living environment standards, with a trend of water quality improvement over time. This suggests that the concentration of TN can act as a major problem as agricultural regions are the main areas in water quality management in the Yeongsan River basin. Therefore, in order to improve water quality according to future climate change, it is expected that it is necessary to further reduce point and non-point sources such as agricultural non-point source reduction management such as fertilizer management and conservation agriculture, and improvement of roof greening and sewage treatment plants in urban areas.

Characteristics Evaluation of Combustion by Analysis of Fuel Gas Using Refuse-derived Fuel by Mixing Different Ratios with Organic and Combustible Wastes (배연가스 분석에 의한 가연성과 유기성폐기물을 혼합한 고형화연료 연소 특성평가)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.27-39
    • /
    • 2009
  • The main objective of this study is to investigate the characteristics of combustion by analyzing fuel gases from a combustion equipment with various combustion conditions for refuse-derived fuels (RDFs). CO gas is a parameter for indicating of incomplete combustion during a combustion process. The lowest CO gas was produced when the experiment conditions were m=2 under air-fuel condition and $800^{\circ}C$. $CO_2$ gas is a final product after complete combustions. The highest amount of $CO_2$ gas was produced when the experiment conditions were m=2 under air-fuel condition and $800^{\circ}C$. The highest level of $SO_2$ gas was produced in S.1 sample containing the highest sulfur. The highest level of NOx gas was produced in S.1 sample with the highest nitrogen content and air-fuel condition of m=2 under temperature of $800^{\circ}C$. HCl gas that is generated by reacting with metals catalyst through oxygen catalyst reaction during combustion process is a precursor of dioxin formation. The higher level of HCl gas was produced in the sample with higher chlorine content. The lowest level of HCl gas was produced when the experiment conditions were air-fuel condition of m=2 and $800^{\circ}C$. The lowest level of $NH_3$ gas was generated when the experiment condition was m=2 under air-fuel condition and after 3 minutes. Air-fuel condition is more important to create $NH_3$ gas than operating temperatures. Higher level of $H_2S$ gas was generated in S.1 sample with the higher sulfur content and was created in RDFs that contain higher mixture ratios of sewage sludge and food wastes. A result of combustion, gases and gases levels from the combustion of S.1 and S.2 were very similar to the combustion of a stone coal. As results of this research, when evaluating the feasibility of the RDFs, the RDFs could be used as auxiliary and main fuels.

Effects of Adsorption and Decomposition on the Removal of Total Organic Carbon (TOC) in Oil Wastewater by Cellulose-based Pseudo Graphene and Persulfate (셀룰로오스 기반 유사-그래핀과 과황산염에 의한 압연류 폐수내 총유기탄소(TOC) 흡착 및 분해효과 연구)

  • Song-I Kim;Ji-Young Shin;Kyung-Chul Park;Jae-Kyu Yang;Dong-Su Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.3
    • /
    • pp.5-18
    • /
    • 2024
  • Chemical oxygen demand (COD), an organic material measurement index, has a limit to the management of the total amount of all organic materials including non-degradable organic materials due to low oxidation rate. So total organic carbon (TOC) that can measure organic materials more accurately is introduced and used as a measurement index. Several environmental companies including company A in Gyeonggi-do dilute raw wastewater first and then treats it with chemicals. And an activated carbon is used at the rear stage to treat total organic carbon even though various treatment processes can be applied to reduce TOC in wastewater. There are some problems such as use of a lot of diluting water and generation of an excessive amount of sludge, so it is urgent to come up with an alternative plan. Therefore, in this study, an application experiment was conducted on two different methods for improving the TOC reduction efficiency of waste water from Company A. The first method is the evaluation of the substitution potential of powered activated carbon(PAC), an adsorbent currently used, by manufacturing cellulose-based graphene like carbon (CGLC). This first study showed that CGLC had about 10% higher TOC adsorption efficiency than commercial PAC, showing the possibility of being applied as an alternative adsorbent for PAC in water treatment sites. The second method relates to the removal of TOC by sulfate radials produced by persulfate (PS) activation. Two activation methods were applied: using CGLC and PAC as carbon-based catalyst and using the high temperature of wastewater for PS activation. As a result of using PAC and CGLC as PS activation materials, the TOC removal rate was lower than the adsorption amount of TOC by CGLC and PAC due to excessive chlorine ions present in the real wastewater. However, as a result of using the high water temperature (55~60℃) of the field wastewater for PS activation, it showed a much greater TOC removal efficiency than PAC alone, CGLC alone, and using a carbon-based catalyst for PS activation. When PS was injected more than 0.5%, it showed a TOC removal efficiency of 95% or more within 24 hr. In addition, when PS was injected more than 0.3%, the TOC concentration could be lowered to less than 75 ppm, which is the wastewater discharge standard applied to company A. When these results were summarized, raw wastewater of high temperature can be treated with a simple process of only adding of PS and discharged by treating TOC below the wastewater discharge standard applied to company A.

Evaluation on Growth Characteristics of Red Pepper (Capsicum annuum L.) and Soil Chemical Properties by Continuous Application of Food Waste Compost with Manure (음식물류폐기물 혼합 가축분 퇴비 연용에 따른 고추(Capsicum annuum L.) 생육 및 토양 화학적 특성 평가)

  • Jin-Ju Yun;Young-Jae Jeong;Seong-Heon Kim;Sang-Ho Jeon;Ahn-Sung Roh;Soon-Ik Kwon;Yu-Na Lee;Jae-Hong Shim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.3
    • /
    • pp.31-41
    • /
    • 2024
  • Food waste compost with high salt content produced by aerobic digestion, but concerns about application of cropland. To address this issue, food waste is being composted by mixing it with livestock manure, which has a lower salt content. Therefore, this study aimed to evaluate the growth characteristics of red pepper and soil chemical properties for continuous application with different amounts of food waste compost with manure (FWC). Treatments were consisted of no fertilizer (NF), inorganic fertilizer (N-N-P2O5-K2O, 19.0-11.2-14.9 kg 10a-1), and inorganic fertilizer + food waste compost with manure (NPKFWC). FWC treatment was applied at three treatment rates based on soil organic matter content: 900 kg 10a-1, 1,800 kg 10a-1, and 2,700 kg 10a-1 ( referred to a s FWC 1, 2, 3 , respectively). As a r esult of the red pepper yield was about 1.8 times higher in NPKFWC 1 and NPKFWC 2 than that in the NF, but decreased in the NPKFWC 3, 300% of the recommended FWC application rate. Yield decreased in all FWC treatments with continuous application for three year and also decreased about 40% from 3,265 kg 10a-1 in the first year to 1,948 kg 10a-1 in the third year. For the soil chemical properties, the content of soil organic matter, available P2O5, and exchangeable cations increased in the FWC treatments, and were higher than the NF. Exchangeable sodium in all treatments was increased slightly compared to the soil before used, and no significant salinization was observed in the FWC. This study confirmed that excessive use of FWC not only reduced nutrient use efficiency, but also decreased the red pepper yield. Therefore, it is concluded that optimum usage of FWC is effective for agroecological impacts.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

Performance Evaluation of WWTP Based on Reliability Concept (신뢰성에 기초한 하수처리장 운전효율 평가)

  • Lee, Doo-Jin;Sun, Sang-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.348-356
    • /
    • 2007
  • Statistical and probabilistic method was used in the analysis of data, which is the most effective one in describing the various natures, and the methodology relating the results with the design was developed. Influents and effluents of three treatment plants were analyzed and the focus was made on BOD, COD, SS, IN, TP The fluctuations of influent such as BOD, COD, SS were extremely large and their standard deviations(st.dev) were more than 10 mg/L. but those of TN, TP were small; the st.dev was 6.6 mg/L for TN, 0.6 mg/L for TP, respectively. But, effluent concentration showed consistent pattern regardless of the influent fluctuations, the st.dev was ranged between 0.28 and 4.48 mg/L. Effluent distributional characteristics were as follows; BOD, COD were distributed normally, but SS, TN, and TP, log-normally; unsymmetric and skewed to the right. The coefficient of reliability(COR) based on the results of statistics of data was introduced to evaluate the process performance an4 to reflect the process performance to the process design. The coefficient of reliability relates the design value(the goal) with the standards and it can be used in operating treatment facilities under a certain reliability level and/or in evaluating the reliability of the treatment facilities on operation. Each treated water quality of effluent showed the half of water quality standards in the level of 50% percentile and all treatment plant was achieved 100% probability of water quality standards. It was concluded that the variability of the process performance should be reflected to the design procedure and the standards through the analysis based on the statistics and the probability.