• Title/Summary/Keyword: resource-based learning

Search Result 419, Processing Time 0.028 seconds

Study on the Expansion of School Library Catalog Considering Educational Context (교육적 맥락을 고려한 학교도서관 목록 정보의 확장에 관한 연구)

  • Lee, Byeong-Ki
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.20 no.4
    • /
    • pp.85-100
    • /
    • 2009
  • This study suggested the expansion strategies of school library catalog considering educational context which should be used teaching and learning process. To achieve the purpose of research, this study derived educational context categories by comparing and analyzing teaching and learning related factors, information resource related factors. Also, this study analysed case system considering educational context. Based on the results, this study designed the catalog data elements as an element to be added to an existing school libraries system(DLS). The derived data element is end user(teacher, students), instructional situations (teaching method, instructional object, curriculum, evaluation type), resource type(feature, discipline, format), reading situation(contextual reading, literature topic), related materials(teacher representation, student representation).

Card Transaction Data-based Deep Tourism Recommendation Study (카드 데이터 기반 심층 관광 추천 연구)

  • Hong, Minsung;Kim, Taekyung;Chung, Namho
    • Knowledge Management Research
    • /
    • v.23 no.2
    • /
    • pp.277-299
    • /
    • 2022
  • The massive card transaction data generated in the tourism industry has become an important resource that implies tourist consumption behaviors and patterns. Based on the transaction data, developing a smart service system becomes one of major goals in both tourism businesses and knowledge management system developer communities. However, the lack of rating scores, which is the basis of traditional recommendation techniques, makes it hard for system designers to evaluate a learning process. In addition, other auxiliary factors such as temporal, spatial, and demographic information are needed to increase the performance of a recommendation system; but, gathering those are not easy in the card transaction context. In this paper, we introduce CTDDTR, a novel approach using card transaction data to recommend tourism services. It consists of two main components: i) Temporal preference Embedding (TE) represents tourist groups and services into vectors through Doc2Vec. And ii) Deep tourism Recommendation (DR) integrates the vectors and the auxiliary factors from a tourism RDF (resource description framework) through MLP (multi-layer perceptron) to provide services to tourist groups. In addition, we adopt RFM analysis from the field of knowledge management to generate explicit feedback (i.e., rating scores) used in the DR part. To evaluate CTDDTR, the card transactions data that happened over eight years on Jeju island is used. Experimental results demonstrate that the proposed method is more positive in effectiveness and efficacies.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

The Impact of Human Resource Innovativeness, Learning Orientation, and Their Interaction on Innovation Effect and Business Performance : Comparison of Small and Medium-Sized vs. Large-Sized Companies (인적자원의 혁신성, 학습지향성, 이들의 상호작용이 혁신효과 및 사업성과에 미치는 영향 : 중소기업과 대기업의 비교연구)

  • Yoh, Eunah
    • Korean small business review
    • /
    • v.31 no.2
    • /
    • pp.19-37
    • /
    • 2009
  • The purpose of this research is to explore differences between small and medium-sized companies and large-sized companies in the impact of human resource innovativeness(HRI), learning orientation(LO), and HRI-LO interaction on innovation effect and business performance. Although learning orientation has long been considered as a key factor influencing good performance of a business, little research was devoted to exploring the effect of HRI-LO interaction on innovation effect and business performance. In this study, it is investigated whether there is a synergy effect between innovative human workforce and learning orientation corporate culture, in addition to each by itself, to generate good business performance as well as a success of new innovations in the market. Research hypotheses were as follows, including H1) human resource innovativeness(HRI), learning orientation(LO), and interactions of HRI and LO(HRI-LO interaction) positively affect innovation effect, H2) there is a difference of the effect of HRI, LO, and HRI-LO interaction on innovation effect between large-sized and small-sized companies, H3) HRI, LO, HRI-LO interaction, innovation effect positively affect business performance, and H4) there is a difference of the effect of HRI, LO, HRI-LO interaction, and innovation effect on business performance between large-sized and small-sized companies. Data were obtained from 479 practitioners through a web survey since the web survey is an efficient method to collect a national data at a variety of fields. A single respondent from a company was allowed to participate in the study after checking whether they have more than 5-year work experiences in the company. To check whether a common source bias is existed in the sample, additional data from a convenient sample of 97 companies were gathered through the traditional survey method, and were used to confirm correlations between research variables of the original sample and the additional sample. Data were divided into two groups according to company size, such as 352 small and medium-sized companies with less than 300 employees and 127 large-sized companies with 300 or more employees. Data were analyzed through t-test and regression analyses. HRI which is the innovativeness of human resources in the company was measured with 9 items assessing the innovativenss of practitioners in staff, manager, and executive-level positions. LO is the company's effort to encourage employees' development, sharing, and utilizing of knowledge through consistent learning. LO was measured by 18 items assessing commitment to learning, vision sharing, and open-mindedness. Innovation effect which assesses a success of new products/services in the market, was measured with 3 items. Business performance was measured by respondents' evaluations on profitability, sales increase, market share, and general business performance, compared to other companies in the same field. All items were measured by using 6-point Likert scales. Means of multiple items measuring a construct were used as variables based on acceptable reliability and validity. To reduce multi-collinearity problems generated on the regression analysis of interaction terms, centered data were used for HRI, LO, and Innovation effect on regression analyses. In group comparison, large-sized companies were superior on annual sales, annual net profit, the number of new products/services in the last 3 years, the number of new processes advanced in the last 3 years, and the number of R&D personnel, compared to small and medium-sized companies. Also, large-sized companies indicated a higher level of HRI, LO, HRI-LO interaction, innovation effect and business performance than did small and medium-sized companies. The results indicate that large-sized companies tend to have more innovative human resources and invest more on learning orientation than did small-sized companies, therefore, large-sized companies tend to have more success of a new product/service in the market, generating better business performance. In order to test research hypotheses, a series of multiple-regression analysis was conducted. In the regression analysis examining the impact on innovation effect, important results were generated as : 1) HRI, LO, and HRI-LO affected innovation effect, and 2) company size indicated a moderating effect. Based on the result, the impact of HRI on innovation effect would be greater in small and medium-sized companies than in large-sized companies whereas the impact of LO on innovation effect would be greater in large-sized companies than in small and medium-sized companies. In other words, innovative workforce would be more important in making new products/services that would be successful in the market for small and medium-sized companies than for large-sized companies. Otherwise, learning orientation culture would be more effective in making successful products/services for large-sized companies than for small and medium-sized companies. Based on these results, research hypotheses 1 and 2 were supported. In the analysis of a regression examining the impact on business performance, important results were generated as : 1) innovation effect, LO, and HRI-LO affected business performance, 2) HRI by itself did not have a direct effect on business performance regardless of company size, and 3) company size indicated a moderating effect. Specifically, an effect of the HRI-LO interaction on business performance was stronger in large-sized companies than in small and medium-sized companies. It means that the synergy effect of innovative human resources and learning orientation culture tends to be stronger as company is larger. Referring to these result, research hypothesis 3 was partially supported whereas hypothesis 4 was supported. Based on research results, implications for companies were generated. Regardless of company size, companies need to develop the learning orientation corporate culture as well as human resources' innovativeness together in order to achieve successful development of innovative products and services as well as to improve sales and profits. However, the effectiveness of the HRI-LO interaction would be varied by company size. Specifically, the synergy effect of HRI-LO was stronger to make a success of new products/services in small and medium-sized companies than in large-sized companies. However, the synergy effect of HRI-LO was more effective to increase business performance of large-sized companies than that of small and medium-sized companies. In the case of small and medium-sized companies, business performance was achieved more through the success of new products/services than much directly affected by HRI-LO. The most meaningful result of this study is that the effect of HRI-LO interaction on innovation effect and business performance was confirmed. It was often ignored in the previous research. Also, it was found that the innovativeness of human workforce would not directly influence in generating good business performance, however, innovative human resources would indirectly affect making good business performance by contributing to achieving the development of new products/services that would be successful in the market. These findings would provide valuable managerial implications specifically in regard to the development of corporate culture and education program of small and medium-sized as well as large-sized companies in a variety of fields.

The Study of National Assessment of Educational Achievement in Elementary Mathematics in 2001 (2001년도 국가수준의 초등학교 수학과 교육성취도 평가 연구)

  • 황혜정;한경혜
    • Education of Primary School Mathematics
    • /
    • v.5 no.2
    • /
    • pp.121-142
    • /
    • 2001
  • The goal of the National Assessment of Educational Achievement(NAEA) 2001 was to affirm the accountability of school education, to scientifically manage and elevate the quality of education at the national level, and to articulate the final design of the NAEA. It was implemented on June 28th of the year 2001. The assessment frame for NAEA includes the achievement standards, the assessment standards, the instruction for the item development, and the grading policy for mathematics subject. Most of items are multiple-choice types, but the performance-based items should be at least thirty percent of the total items, also 30% in case of mathematics. Approximately 1% of students among entire population of the Grades 6 were randomly selected. Therefore, the finally sampled examines were 8023 at Grade 6. The result of the analysis of the NAEA revealed that Grade 6 students was labelled as ‘average’ level in general (Number and Operation: average, Geometric figures: average, Patterns and Functions: excellent, Measurements: average, Letters and Expressions: average, Probability and Statistics: average). The most characteristic finding was that except for Grade 6(its average is 69.92), most secondary students obtained low test scores and its average of each grade is below 50 out of 100. Especially, the scores on the performance-based items were by and large very low. This finding implies that Korean students are not familiar with the kind of test items which requires expression of ideas and feelings and they are rather familiar with the multiple-choice items. Another interesting finding was that the students in small towns and remote areas showed significantly low scores in all four skills compared with Seoul, metropolitan cities and medium and small cities. This may be attributed from the fact that the remote areas do not have equal learning environment with regard to social and cultural experience, supply of various teaching materials, extracurricular lessons which are directly related to teaching and learning. These findings may be utilized as a reliable resource fur improving curriculum and teaching and learning in Mathematics.

  • PDF

Collaborative Modeling of Medical Image Segmentation Based on Blockchain Network

  • Yang Luo;Jing Peng;Hong Su;Tao Wu;Xi Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.958-979
    • /
    • 2023
  • Due to laws, regulations, privacy, etc., between 70-90 percent of providers do not share medical data, forming a "data island". It is essential to collaborate across multiple institutions without sharing patient data. Most existing methods adopt distributed learning and centralized federal architecture to solve this problem, but there are problems of resource heterogeneity and data heterogeneity in the practical application process. This paper proposes a collaborative deep learning modelling method based on the blockchain network. The training process uses encryption parameters to replace the original remote source data transmission to protect privacy. Hyperledger Fabric blockchain is adopted to realize that the parties are not restricted by the third-party authoritative verification end. To a certain extent, the distrust and single point of failure caused by the centralized system are avoided. The aggregation algorithm uses the FedProx algorithm to solve the problem of device heterogeneity and data heterogeneity. The experiments show that the maximum improvement of segmentation accuracy in the collaborative training mode proposed in this paper is 11.179% compared to local training. In the sequential training mode, the average accuracy improvement is greater than 7%. In the parallel training mode, the average accuracy improvement is greater than 8%. The experimental results show that the model proposed in this paper can solve the current problem of centralized modelling of multicenter data. In particular, it provides ideas to solve privacy protection and break "data silos", and protects all data.

Effects of Modeling-Based Science Inquiry Instruction on Elementary Students' Learning in the Unit of Seasonal Changes (초등학생들의 계절의 변화 단원의 학습에서 모델링 중심 과학 탐구 수업의 효과)

  • Yoo, Yeon Joon;Oh, Phil Seok
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.2
    • /
    • pp.265-276
    • /
    • 2016
  • In this study, modeling pedagogies were employed to re-design and teach the unit of Seasonal Changes in the $6^{th}$ grade science curriculum. The effects of the modeling-based program were investigated in both the conceptual and affective domains using an approach of mixing quantitative and qualitative techniques. The result showed that the students in the modeling-based science inquiry classroom gained a higher mean score in a conceptual achievement test than their counterparts in a traditional science classroom. The number of the conceptual resources activated to explain the causes of the seasons, as well as the types of student explanations developed through the combination of the resources activated, were greater in the modeling-based classroom. The modeling-based science inquiry was also effective in improving student attitudes toward science lessons. It was revealed, however, that the students experienced both positive and negative epistemic feelings during the modeling-based science inquiry. Implications of these findings for science education and relevant research were suggested and discussed.

An Empirical Study on Technological Innovation Management Factors of SMEs (중소기업의 기술혁신 관리요소에 관한 실증연구)

  • Im, Chae-Hyon;Shin, Jin-Kyo
    • Journal of Technology Innovation
    • /
    • v.20 no.2
    • /
    • pp.75-107
    • /
    • 2012
  • Previous researches on technological innovation have several limitations such as lack of general mechanism for technological innovation(inputs, throughputs and outputs of technological innovation), large company oriented studies, and ignoring importance of technology management capabilities. So, this study suggested a new model using resource-based theory and system theory, and empirically applied that to SMEs. Structural equation model analysis by using 223 SMEs in Daegu region provided a support for most of hypotheses. Research results showed that all of factors on technological innovation were significantly and positively related with each other: inputs(R&D leadership, innovation strategy, R&D investment, R&D human resource management, external network), throughputs(portfolio management, project management, technology commercialization) and output(technological innovation). In case of technological innovation inputs, R&D leadership influenced on innovation strategy positively and significantly. And R&D leadership and innovation strategy had positive and significant effects on R&D investment, R&D human resource management and external network. R&D human resource management and external network exerted positive and significant influences on technological innovation throughputs such as portfolio management and project management. But R&D investment did not significant impacts on technological innovation throughputs. Among technological innovation throughputs, both portfolio management and project management had positive and significant effect on technology commercialization. In addition, technology commercialization acted positively and significantly technological innovation output. This study suggests necessary of efforts to implement innovation strategy and manage R&D human resource effectively based on CEO's innovativeness and entrepreneurship. Also, if SMEs want to develop technology and commercialize it, they have to cooperate with external technology resources and informations. Research results revealed that proper level of R&D investment, internal and external communication, information sharing, and learning and cooperative culture were very important for improvement of technological innovation performance in SMEs. Especially, this research suggested that if SMEs manage technological innovation process effectively based on resource-based and system approaches, then they can overcome their resource limitations and gain high technological innovation performance. Also, useful policy support for technological innovation of central or regional government by this research model is important factor for SMEs' technological innovation performance.

  • PDF

Malware Application Classification based on Feature Extraction and Machine Learning for Malicious Behavior Analysis in Android Platform (안드로이드 플랫폼에서 악성 행위 분석을 통한 특징 추출과 머신러닝 기반 악성 어플리케이션 분류)

  • Kim, Dong-Wook;Na, Kyung-Gi;Han, Myung-Mook;Kim, Mijoo;Go, Woong;Park, Jun Hyung
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • This paper is a study to classify malicious applications in Android environment. And studying the threat and behavioral analysis of malicious Android applications. In addition, malicious apps classified by machine learning were performed as experiments. Android behavior analysis can use dynamic analysis tools. Through this tool, API Calls, Runtime Log, System Resource, and Network information for the application can be extracted. We redefined the properties extracted for machine learning and evaluated the results of machine learning classification by verifying between the overall features and the main features. The results show that key features have been improved by 1~4% over the full feature set. Especially, SVM classifier improved by 10%. From these results, we found that the application of the key features as a key feature was more effective in the performance of the classification algorithm than in the use of the overall features. It was also identified as important to select meaningful features from the data sets.

Self-Directed Learning in the Workplace and Labor Education in South Korea: Implications for Legislation on Trade Union Education (일터 내 자기주도학습과 한국의 노동교육: 노동조합교육 법제화에 대한 함의)

  • Oh, Jeong Rok;Park, Cho Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.131-148
    • /
    • 2020
  • The purpose of this study is to explore self-directed learning (SDL) in the workplace and to examine labor education in South Korea in order to draw the critical implications for legislation on trade union education (TUE). First, labor education in South Korea and its legal system were reviewed in a detailed way. Second, SDL in the workplace was closely analyzed from the perspectives of not only human resource development (HRD) but also adult education and lifelong learning. Third, based on the results of the comprehensive review, the implications of SDL in the workplace for worker-initiated labor education were discussed in terms of legislation on TUE in South Korea. Since legislation at the national level can promote workers' participation in TUE in the context of SDL for industrial democracy, TUE in South Korea should be provided with appropriate legislative, financial, and administrative support.