• Title/Summary/Keyword: resonators

Search Result 580, Processing Time 0.027 seconds

A Study on the Orthogonality Properties of the Eigenmodes of Phase Conjugate Optical Resonator (위상 공액 공진기의 고유 모드 직교성에 관한 연구)

  • Cho, Che Hwang;Kim, Eun Soo;Young, In Eung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.3
    • /
    • pp.397-400
    • /
    • 1986
  • In this paper, the orthogonal properties of the eigenmodes of optical resonators which have phase conjugate mirrors at both ends are derived. The modes which propagate in resonators are descdribed by the Huygens integral. Then, the eigeneuqation which is needed in order to prove the orthogonality of the eigenmodes of the resonator is obtained from this representation. When the kernel being a part of the eigenequation is Hermitian as in conventional resonators and in optical resonator with only one phase conjugate mirror, one can show that the eigenmodes have essentially biorthogonal relations, which are satisfied the set of modes propagating in one direcdtion around the resonator and the adjoint set of modes propagating in the reversed direction.

  • PDF

Comparison of Achievable Efficiency for Different Resonator Structures in a Magnetic Resonance-based Wireless Power Transfer System (자기 공진 기반의 무선전력전송 시스템에서 송수신 공진기의 구조 차이에 따른 달성 가능한 효율 비교)

  • Lee, Kisong;Yang, Haekwon;Ra, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1035-1041
    • /
    • 2017
  • In magnetic resonance-based wireless power transfer (WPT) systems, frequency splitting phenomenon, in which power transfer efficiency (PTE) decreases seriously as resonators are close to each other, is the problem that we should address for reliable power transfer in short distance. In this paper, we present WPT systems using an equivalent circuit model and analyze PTE and marginal coupling coefficient ($k_{split}$) where the frequency splitting occurs. In addition, we perform circuit-level simulations using Advanced Design System, and show that the achievable PTE is different for the structures of resonators when k>$k_{split}$. We confirm that higher PTE can be ensured as k increases in the case of identical resonators, while PTE is degraded as k increases in the case of non-identical resonators. Therefore, in short distance, in which k>$k_{split}$, it is more efficient for achieving reliable PTE to use identical resonators rather than non-identical resonators.

Design of Coupled Resonators Bandpass Filter with Defected Ground Structure

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.150-154
    • /
    • 2011
  • In this paper a four-pole elliptic function bandpass filter is designed with two ground slots. A research of microstrip bandpass filters (BPF) using defected ground structures (DGS) is presented. DGS technique allows designs of tight couplings without the necessity of using very narrow coupling gaps. The simulator Sonnet is used to design the resonator and to calculate the coupling coefficient of the basic coupling structure. Compared to similar microstrip filters without defected ground structure, the simulated performances of these novel structures indicate some technological advantages.

Design of a Microstrip Bandpass Filter Using Step Impedance Resonators and Tapped Input/Output (스텝 인피던스 공전기와 입출력 텝핑을 이용한 마이크로 스트립 대역통과 필터의 설계)

  • 박동철;박정일;이병남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1728-1735
    • /
    • 1989
  • A design procedure for microstrip bandpass filters using step impedance resonators (SIR's) and tapped input/output to a conventional parallel coupled line bandpass filter is presented. The filter configuration consisting of both half-wavelength and SIR's suppreses to spurious resonance response near the second harmonics, while tapping techniques offer benefit in situations where the impractical. The measured frequency responses of the designed filter are in close agreement with the computed responses.

  • PDF

A Study on the RF filter of Wireless LAN using Hairpin Resonator (Hairpin 공진기를 이용한 무선 LAN용 RF필터에 관한 연구)

  • 오태성;이영훈
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.424-428
    • /
    • 2000
  • In this paper, a MIC(Microwave Integrated Circuit) bandpass filter for wireless LAN(local area network) band is designed using hairpin resonators. The coupling between the hairpin resonators in the filter can be implemented with Y-Tpye coupling or X-Tpye coupling instead of conventional coupling in order to reduce the filter size. The filter with miniaturized hairpin resonator using parallel coupling is smaller in size by 50% more than that of a general hairpin filter

  • PDF

An Application of the plane wave theory for the analysis of the automobile intake system (자동차 흡기계 해석에서의 평면파 이론 적용)

  • 이장명;임학종;김민진;정병인
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.460-465
    • /
    • 1997
  • In the begining stage of development of a new automobile, decision of appropriate positions and room of resonators is important to NVH engineers. To find optimized positions of resonators of an automotive intake system, numerical approach such as acoustic FEM or BEM and experimental work are possible. However, either method requires many efforts and time to prepare a numerical or a real model. This research demonstrates easy way to design an adequate intake system.

  • PDF

Time-Domain Analysis of Coupled-Ring Reflector Laser Diode Including Active Region within Resonators (공진기 내에 이득 영역을 포함하는 Coupled-Ring Reflector 레이저 다이오드의 시 영역 해석)

  • Yun, Pil-Hwan;Kim, Su-Hyeon;Jeong, Yeong-Cheol
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.313-314
    • /
    • 2006
  • We have investigated the wavelength tuning characteristics due to the vernier effect of coupled-ring reflector laser diode including active region within resonators using time-domain modeling. It is shown that the wavelength can be widely tuned with side mode suppression ratio more than 30dB by adjusting the refractive index difference between mismatched rings.

  • PDF

Equivalent Circuit Design of 2.4GHz Band LTCC Bandpass Filter (2.4GHz 대역 LTCC 대역통과 여파기의 등가회로 설계)

  • 성규제;양승환;김동연;유재하;여동훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.313-316
    • /
    • 2003
  • The LTCC bandpass filter using multilayer resonators is made of combline type and interdigital type parallel coupled-lines. The equivalent circuits of parallel coupled-lines are analysed. They are applied to make an equivalent circuit of LTCC bandpass filter using multilayer resonators. The 3-pole bandpass filter of the center frequency of 2.45GHz with 200Hz bandwidth is designed and fabricated. The simulated result of the bandpass filter are presented.

  • PDF

Nanoelectyomechanical Resonator Design and Performance Analysis

  • T. J. Kouh;Kim, D. H.;K. L. Ekinci
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.538-541
    • /
    • 2004
  • We describe a method for the detection of nanometer scale displacements of nanoelectromechanical resonators. We also present an analysis of the mechanical motion of these devices. We evaluate the effectiveness of the detection technique by detecting displacements from a series of nanomechanical doubly clamped beam resonators with decreasing dimensions.

  • PDF

Frequency-Scanning Type Microwave Tag System Using Defected Ground Structures (결함 접지 구조를 이용한 주파수 스캐닝 방식의 마이크로파 태그 시스템)

  • Lee, Seok-Jae;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2013
  • In this paper, a microwave tag system of a frequency-scanning type is proposed with multi-resonators using defected ground structures. While a conventional chip-based RFID stores time-sequential codes, the proposed type achieves pure passive tags by using multi-resonant bits over a frequency range. Moreover, the resonators of the spiral defected ground structures implemented on the back side of transmission lines have advantages of the excellent bandstop characteristics as well as the bit-error avoidance by the re-radiation on normal resonators. The proposed microwave tag is designed with UWB antennas at 3~7 GHz. From the experimental results in an anechoic chamber, it has been verified of the excellent recognitions for various 5-bits identification codes.