• Title/Summary/Keyword: resonant beam

Search Result 165, Processing Time 0.025 seconds

Development of a double cantilever sandwich beam method for evaluating frequency dependence of dynamic modulus and damping factor of rubber materials (고무의 동탄성계수와 손실계수의 주파수 의존성을 평가하기 위한 양팔 샌드위치보 시험법의 개발)

  • 김광우;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.19-22
    • /
    • 2001
  • This paper proposes a double cantilever sandwich-beam method for evaluating the frequency dependence of material dynamic characteristics. The flexural vibration of a double cantilever sandwich-beam specimen with a partially inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Quadratic relationships of dynamic elastic modulus and material loss factor of rubbers with frequency were quantitatively suggested employing the least square error method.

  • PDF

Evaluation of Dynamic Characteristics of Rubber Materials Using a Double Cantilever Sandwich Beam Method (양팔 샌드위치보 시험법에 의한 EPDM고무의 동특성 평가 연구)

  • Kim, Kwang-Woo;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1393-1400
    • /
    • 2002
  • A double cantilever sandwich-beam method has been applied to the evaluation of the frequency dependence of dynamic elastic modulus and material loss factor of EPDM rubbers. The flexural vibration of a double cantilever sandwich-beam specimen with an inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Effects of the rubber layer length on the dynamic characteristics were also investigated: reliable values were measured when the length of the inserted rubber layer was larger than and equal to 50% of the effective specimen length. The values were compared with those obtained by the dynamic mechanical analysis and the simple resonant test. Relationships of the dynamic characteristics of rubbers with frequency could be determined using the least square error method.

Dynamic Analysis of Micro Cantilever Beams Undertaking Electrostatic Forces (정전기력을 받는 마이크로 외팔보의 동적 해석)

  • Jung Kang-Sik;Moon Seung-Jae;Yoo Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.846-851
    • /
    • 2004
  • Static and dynamic responses of micro cantilever beam structures undertaking electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as resonant frequencies are estimated for several sets of beam properties and applied voltages. It is shown that the applied voltage influences the deflection and the modal characteristics significantly. Such information can be usefully employed for the design of MEMS structures.

Design of polycrystalline 3C-SiC micro beam resonators with corrugation (주름진 다결정 3C-SiC 마이크로-빔 공진기의 설계)

  • Nguyen-Duong, The-Nhan;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.74-75
    • /
    • 2008
  • This work has suggested corrugation beam as a new structure for mechanical resonators. Micro beam resonators based on 3C-SiC films which have two side corrugations along the length of beams were simulated by finite-element modeling and compared to a flat rectangular beam with the same dimension. With the dimension of $36\times12\times0.5{\mu}m^3$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, this frequency reaches 1.252 MHz with the corrugated cantilever which has the same dimension with flat type but corrugation width of $6{\mu}m$ and depth of $0.4{\mu}m$. It is expected that mechanical resonators with corrugations will be very helpful for the research of sensing devices with high-resolution, high-performance oscillators and filters in wireless communications as well as measurement in basic physics.

  • PDF

Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train

  • Klasztorny, M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.267-281
    • /
    • 2001
  • Transient and quasi-steady-state vertical vibrations of a multi-span beam steel bridge located on a single-track railway line are considered, induced by a superfast passenger train, moving at speed 120-360 km/h. Matrix dynamic equations of motion of a simplified model of the system are formulated partly in the implicit form. A recurrent-iterative algorithm for solving these equations is presented. Excessive vibrations of the system in the resonant zones are reduced effectively with passive dynamic absorbers, tuned to the first mode of a single bridge span. The dynamic analysis has been performed for a series of types of bridges with span lengths of 10 to 30 m, and with parameters closed to multi-span beam railway bridges erected in the second half of the $20^{th}$ century.

Parametric Array Signal Generating System using Transducer Array (트랜스듀서 배열을 이용한 파라메트릭 배열 신호 생성 시스템)

  • Lee, Jaeil;Lee, Chong Hyun;Bae, Jinho;Paeng, Dong-Guk;Choe, Mi Heung;Kim, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • We present a parametric array signal generating system using $3{\times}16$ transducer array which is composed of multi-resonant frequency transducers of 20kHz and 32.5kHz. To drive transducer array, sixteen channel amplifier using LM1875 chips is designed and implemented, and the PXI system based on the LabView 8.6 for arbitrary signal generation and analysis is used. Using the proposed system, we measure sound pressure level and beam pattern of difference frequency and verify the nonlinear effect of difference frequency. The theoretical absorption range and the Rayleigh distance are 15.51m and 1.933m, respectively and we verify that sound pressure of difference frequency is accumulated and increased at the near-field shorter than the Rayleigh distance. We verify that the beam pattern of the measured difference frequency and the beam pattern obtained by the superposition of two primary frequencies are similar, and high directional parametric signal was generated.

Binary and ternary gas mixtures of He-Ne-Xe for improvement of vacuum ultraviolet luminous efficiency in ac-PDPs.

  • Jung, Kyu-Bong;Lee, Jun-Ho;Park, Won-Bae;Jeon, Wook;Oh, Phil-Young;Cho, Guang-Sup;Uhm, Han-Sup;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.522-524
    • /
    • 2004
  • The improvement of luminance and luminous efficiency is the one of the most important part in AC-PDPs. To achieve high luminance and luminous efficiency, high VUV emission efficiency is needed. We measured the emission spectra of vacuum ultraviolet(VUV) rays in surface discharge AC-PDP with binary and ternary gas mixtures of Ne-Xe and He-Ne-Xe. The influence of He-Ne-Xe gas-mixture ratio on excited $Xe^{\ast}$ resonant atoms and $Xe_2$$^{\ast}$ dimers has been investigated. It is found that luminous efficiency of ternary gas mixture, He-Ne-Xe, is shown to be much higher than that of binary gas mixture of Ne-Xe.

  • PDF

Active-passive control of flexible sturctures using piezoelectric sensor/actuator (압전형 센서/액추에이터를 이용한 진동구조물의 능동-수동제어)

  • 고병식
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.313-325
    • /
    • 1995
  • Two active/passive vibration dampers were designed to control a cantilever beam first mode of vibration. The active element was a piezoelectric polymer, polyvinlidene fluoride (PVDF). The passive damping was provided by the application of a viscoelastic layer on the surface of the steel beam. Two substantially different damper configurations were designed and tested. One damper consisted of a piezoelectric actuator bonded to one face of the beam, with a viscoelastic layer applied to the other surface of the beam. The second one was composed of a layer viscoeastic layer with one surface bonded to the beam, and with other being constrained by nine piezoelectric actuators connected in parallel. A control law based on the sign of the angular velocity of the cantilever beam was implemented to control the beam first mode of vibration. The piezoelectric sensor output was digitally differentiated to obtain the transverse linear velocity, and its sign was used in the control algorith. Two dampers provided the system a damping increase of a factor of four for the first damper and three for the second damper. Both dampers were found to work well at low levels of vibration, suggesting that they can be used effectively to prevent resonant vibrations in flexible structure from initiating and building up.

  • PDF

Free vibration and harmonic response of cracked frames using a single variable shear deformation theory

  • Bozyigit, Baran;Yesilce, Yusuf;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.33-54
    • /
    • 2020
  • The aim of this study is to calculate natural frequencies and harmonic responses of cracked frames with general boundary conditions by using transfer matrix method (TMM). The TMM is a straightforward technique to obtain harmonic responses and natural frequencies of frame structures as the method is based on constructing a relationship between state vectors of two ends of structure by a chain multiplication procedure. A single variable shear deformation theory (SVSDT) is applied, as well as, Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT) for comparison purposes. Firstly, free vibration analysis of intact and cracked frames are performed for different crack ratios using TMM. The crack is modelled by means of a linear rotational spring that divides frame members into segments. The results are verified by experimental data and finite element method (FEM) solutions. The harmonic response curves that represent resonant and anti-resonant frequencies directly are plotted for various crack lengths. It is seen that the TMM can be used effectively for harmonic response analysis of cracked frames as well as natural frequencies calculation. The results imply that the SVSDT is an efficient alternative for investigation of cracked frame vibrations especially with thick frame members. Moreover, EBT results can easily be obtained by ignoring shear deformation related terms from governing equation of motion of SVSDT.