• Title/Summary/Keyword: resonant DC Link

Search Result 123, Processing Time 0.021 seconds

Analysis of Output Characteristics for the Resonant DC Link Inverter Using PWM Inverter Modulation Methods (인버터 PWM 방식을 이용한 공진형 직류 링크 인버터의 출력 특성 해석)

  • 김윤호;윤병도;이병순
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.615-624
    • /
    • 1992
  • For the operation of the resonant DC link inverters, only limited number of modulation techniques such as the delta modulation and instantaneous current control techniques have been suggested. However, these modulation techniques have some limitations in practical operation. In this paper, the application of conventional inverter modulation techniques is suggested for the control of the resonant DC link inverter. The harmonic analysis results are presented. The results show that these modulation techniques offer good output characteristics similar to conventional inverter PWM techniques for the operation of the resonant DC link inverter. This implies that not only the delta modulation technique and instantaneous current control techniques but also various other modulation techniques can be applied to the operation of the resonant DC link inverter. This also indicates that open loop control as well as closed loop control can be used for the operation of the resonant inverter. The resonant DC link inverter with various modulation strategies is implemented using V-40 microprocessors.

  • PDF

A Study on Improving Characteristics in the Parallel Resonant DC Link Inverter (병렬공진형 직류 링크 인버터의 특성 개선에 관한 연구)

  • Beak, J.W.;Yoo, D.W.;Kim, J.S.;Lim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.429-431
    • /
    • 1994
  • A parallel resonant dc link inverter, one of the many resonant inverters, has some superior characteristics in camparision with other resonant inverters. But loss of the resonant oscillation and occurrence of high peak voltage in the resonant capacitor of these inverters are serious problems. In this paper, we investigate a control method for resonant dc link inverters which can overcome these problems. Experimental results are presented to show superior operation of the resonant dc link inverter using the proposed control method.

  • PDF

Analysis of three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터의 해석)

  • Kim, Young-Mun;Kang, Wook-Jung;Mun, Sang-Pil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.2
    • /
    • pp.49-55
    • /
    • 2003
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current-fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

Characteristic of Three-Phase Voltage Type Soft-Switching Inverter using the Novel Active Auxiliary Resonant DC Link Snubber (새로운 액티브 보조 공진 DC 링크 스너버를 이용한 3상 전압형 소프트 스위칭 인버터의 특성)

  • Sung, Chi-Ho;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.114-121
    • /
    • 2016
  • This paper is Instant space vector PWM(Pulse Width Modulation)power conversion devices in switching power semiconductors from my generation to losses and switching when the voltage surge and current surge of electronic noise(EMI: Electro Magnetic Interference / RFI: Radio Frequency Interference)to effectively minimize the power soft-switching power conversion circuit topologies of auxiliary resonant DC tank for the purpose of high performance realization of the electric power conversion system by the high-speed switching of a semiconductor device(AQRDCT simultaneously : an active auxiliary resonance using auxiliary Quasi-resonant DC tank)DC link snubber switch has adopted a three-phase voltage inverter. AQRDCL proposed in this paper can reduce the effective and current peak stress of the power semiconductors of the auxiliary resonant snubber circuit compared to the conventional active-resonant DC link snubber, it is not necessary to install the clamp switch of the auxiliary resonant DC link, DC the peak current and power loss of the bus line can be reduced.

Quasi-Parallel Resonant DC-link Inverter with One Additional Switching Device (하나의 추가 스위칭 소자를 갖는 유사병렬 공진형 DC-link 인버터)

  • 정용채
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.170-175
    • /
    • 2000
  • A new quasi-parallel resonant DC link inverter is proposed for three phase soft switching application. By i inserting only one additional switch, the proposed inverter excludes both voltage stresses and restricted PWM p problems, which are demerits of the conventional resonant inverter. In this paper, the circuit operations are e explained in detail using the operational mode analysis of the proposed inverter and design methods of the r resonant components are suggest('x:l. Lastly, the applicable possibility of the proposed inverter is vel예fied t through the experimental results.

  • PDF

A Novel Three-Phase Quasi-Resonant DC Link Inverter (새로운 3상 준공진 직류링크 인버터)

  • Lee, Jin-Woo;Park, Min-Ho;Won, Jong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.5
    • /
    • pp.479-488
    • /
    • 1991
  • A novel three-phase quasi-resonant dc link inverter (QRI)with a switch connected between dc voltage source and resonant inductor is proposed. According to the state of switching and load current, the operating mode of the proposed inverter scheme is classified into free-wheeling, inverting, and rectifying mode. By examining the behavior of the circuit in each operating mode, an equivalent circuit which represents all the modes in a unified manner is derived. The operating principle of QRI at inverting mode is analyzed, and it is shown that the maximum voltage of resonant dc link is confined to twice the dc source voltage and that both the zero voltage switching of inverter and the zero current switching of inserted switch are guaranteed. An appropriate current control algorithm is suggested, and the opeating characteristics of proposed resonant inverter are verified through both simulation and experiment.

  • PDF

A New Quasi-Resonant M Link Inverter (새로운 Quasi-Resonant DC Link 인버터)

  • Lee, J.J.;Lee, J.W.;Park, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.328-331
    • /
    • 1990
  • A new quasi-resonant do link inverter is suggested, which can operate at the constant peak do link voltage irrespective of the magnitude of load current. The inverter is analyzed by using the topological analogy between the proposed inverter and the resonant DC/DC converter. Based on the analysis, an appropriate current controller is developed, which results in low current stress to the resonant capacitor and also enjoys the inherent capability of the current initialization of resonant inductor. For the purpose of confirming the inverter characteristics, some simulation results are presented.

  • PDF

Three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터)

  • Suh, Ki-Youn;Lee, Hyun-Woo;Lee, Soo-Heun;Mun, Sang-Pil;Kim, Young-Mun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1015-1019
    • /
    • 2001
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current-fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF

analysis of three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터의 해석)

  • Lee, S.H.;Mun, S.P.;Suh, K.Y.;Kim, Y.M.;Kang, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.55-59
    • /
    • 2002
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current -fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF

A novel resonant pulse control in resonant DC link inverter (공진형 직류 링크 인버터의 공진 펄스 제어기)

  • 유동욱;원충연
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.152-158
    • /
    • 1996
  • A novel resonant pulse control technique which generates high-quality sinusoidal output voltage from a resonant dc link inverter is presented for UPS applicatons. The proposed control technique limits resonant voltae overshoot without any passive or active clamp circuit, resulting in resonant pulses iwth uniform amplitude and high efficiency. The output voltage is controlled by the third order contorller iwth an inner loop of th efilter inductor current and the feedforward controller. Analysis and design of the proposed control technique are illustrated and verified on a 5kVA experimental unit.

  • PDF