• Title/Summary/Keyword: resonance scattering

Search Result 181, Processing Time 0.023 seconds

Spin Wave Interference in Magnetic Nanostructures

  • Yang, Hyun-Soo;Kwon, Jae-Hyun;Mukherjee, Sankha Subhra;Jamali, Mahdi;Hayashi, Masamitsu
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.7-8
    • /
    • 2011
  • Although yttrium iron garnet (YIG) has provided a great vehicle for the study of spin waves in the past, associated difficulties in film deposition and device fabrication using YIG had limited the applicability of spin waves to practical devices. However, microfabrication techniques have made it possible to characterize both the resonant as well as the travelling characteristics of spin waves in permalloy (Py). A variety of methods have been used for measuring spin waves, including Brillouin light scattering (BLS), magneto-optic Kerr effect (MOKE), vector network analyzer ferromagnetic resonance (VNA-FMR), and pulse inductive microwave magnetometry (PIMM). PIMM is one of the most preferred methodologies of measuring travelling spin waves. In this method, an electrical impulse is applied at one of two coplanar waveguides patterned on top of oxide-insulated Py, producing a local disturbance in the magnetization of the Py. The resulting disturbance travels down the Py in the form of waves, and is inductively picked up by the other coplanar waveguide. We investigate the effect of the pulse width of excitation pulses on the generated spin wave packets using both experimental results and micromagnetic simulations. We show that spin wave packets generated from electrical pulses are a superposition of two separate spin wave packets, one generated from the rising edge and the other from the falling edge, which interfere either constructively or destructively with one another, depending upon the magnitude and direction of the field bias conditions. A method of spin wave amplitude modulation is also presented by the linear superposition of spin waves. We use interfering spin waves resulting from two closely spaced voltage impulses for the modulation of the magnitude of the resultant spin wave packets.

  • PDF

Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines

  • Nookala, Supraja;Tollamadugu, Naga Venkata Krishna Vara Prasad;Thimmavajjula, Giridhara Krishna;Ernest, David
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.97-109
    • /
    • 2015
  • Citrate ion is a commonly used reductant in metal colloid synthesis, undergoes strong surface interaction with silver nanocrystallites. The slow crystal growth observed as a result of the interaction between the silver surface and the citrate ion makes this reduction process unique compared to other chemical and radiolytic synthetic methods. The antimicrobial effects of silver (Ag) ion or salts are well known, but the effects of citrate coated Ag nanoparticles (CAgNPs) are scant. Herein, we have isolated biofilm causative bacteria and fungi from drinking water PVC pipe lines. Stable CAgNPs were prepared and the formation of CAgNPs was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance of CAgNPs at 430 nm. Fourier transform infrared spectroscopic analysis revealed C=O and O-H bending vibrations due to organic capping of silver responsible for the reduction and stabilization of the CAgNPs. X-ray diffraction micrograph indicated the face centered cubic structure of the formed CAgNPs, and morphological studies including size (average size 50 nm) were carried out using transmission electron microscopy. The hydrodynamic diameter (60.7 nm) and zeta potential (-27.6 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of CAgNPs was evaluated (in vitro) against the isolated fungi, Gram-negative and Gram-positive bacteria using disc diffusion method and results revealed that CAgNPs with 170ppm concentration are having significant antimicrobial effects against an array of microbes tested.

Near-field limit in positioning the microphone for pressure measurements in using the near-field acoustical holography (근접 음향 홀로그래피에서 음압 측정용 마이크로폰의 근접 거리 한계)

  • Kang, Sung-Chon;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.731-736
    • /
    • 2000
  • The recently developed BEM-based NAH(nearfield acoustical holography) is a useful technique for identifying the sound source of vibrating objects. The acoustic parameters of a sound source can be reconstructed by using the vibro-acoustic transfer matrix, which is determined by means of BEM, and the sound pressure measured in the nearfield. Theoretically, one can come up with a very nice reconstructed result as the field plane gets near to the source surface. However, when a microphone is placed in the very close nearfield of the source surface, the scattering, reflection, or resonance in the gap between the source and the microphone can distort the acoustic field, and therefore, the measured field pressure would differ from the actual one in the absence of the microphone. In order to analyze this problem, the interference effect of the microphone is numerically calculated by using the nonsingular BEM that yields very small error in the nearfield. From this analysis, it is found that the prediction error of the field pressure decreases firstly and then increases as the microphone approaches the vibrating surface from the farfield to the close nearfield. It is noted that the microphone should be separated from the source surface by at least a diameter of the microphone for an error ratio less than 2% in the low frequency range less than about 2.7kHz. This means that if one wants to put a microphone in the very close nearfield. a microphone with small diameter should be used.

  • PDF

Nacl Aqueous Solution Concentration Detection Using Slot-Coupled Capacitor Resonator (슬롯결합 커패시터 공진기를 이용한 Nacl 수용액 농도 검출)

  • Yun, Gi-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.29-35
    • /
    • 2018
  • In this paper, we proposed a high sensitivity sensor that can detect the concentration change of Nacl aqueous solutions by using a slot coupling capacitor resonator in sub-microwave band. The resonator applied to the sensor consists of a parallel plate capacitor connected to an inductive slot utilizing the ground plane of the microstrip line. Based on the measurement data of the dielectric characteristics according to the concentration change, the resonance frequency was determined in the UHF band where the concentration change is evident and the Nacl aqueous solution is inserted into the capacitor. Based on the simulation, the proposed resonator was designed and fabricated. The concentration level was varied from 0 to 400 mg/dl as 100 mg/dl step, and the transmission scattering coefficient ($S_{21}$) was successfully measured. Experimental results show that it is applicable to the concentration detection sensor in Nacl aqueous solution by obtaining minimum 1.8 dB($S_{21}$) at each step.

A poroelastic model for ultrasonic wave attenuation in partially frozen brines (부분 동결된 소금물에서의 초음파감쇠에 대한 다공성탄성 모델)

  • Matsushima, Jun;Nibe, Takao;Suzuki, Makoto;Kato, Yoshibumi;Rokugawa, Shuichi
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.105-115
    • /
    • 2011
  • Although there are many possible mechanisms for the intrinsic seismic attenuation in composite materials that include fluids, relative motion between solids and fluids during seismic wave propagation is one of the most important attenuation mechanisms. In our previous study, we conducted ultrasonic wave transmission measurements on an ice-brine coexisting system to examine the influence on ultrasonic waves of the unfrozen brine in the pore microstructure of ice. In order to elucidate the physical mechanism responsible for ultrasonic wave attenuation in the frequency range of 350.600 kHz, measured at different temperatures in partially frozen brines, we employed a poroelastic model based on the Biot theory to describe the propagation of ultrasonic waves through partially frozen brines. By assuming that the solid phase is ice and the liquid phase is the unfrozen brine, fluid properties measured by a pulsed nuclear magnetic resonance technique were used to calculate porosities at different temperatures. The computed intrinsic attenuation at 500 kHz cannot completely predict the measured attenuation results from the experimental study in an ice-brine coexisting system, which suggests that other attenuation mechanisms such as the squirt-flow mechanism and wave scattering effect should be taken into account.

Characteristic of ITO-Ag-ITO multilayer thin films grown by linear facing target sputtering system (선형대향타겟 스퍼터로 성장시킨 ITO-Ag-ITO 다층박막의 특성 연구)

  • Jeong, Jin-A;Choi, Kwang-Hyuk;Lee, Jae-Young;Lee, Jung-Hwan;Bae, Hyo-Dae;Tak, Yoon-Heung;Ye, Min-Su;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.66-66
    • /
    • 2008
  • 본 연구에서는 ITO/Ag/ITO 다층 박막을 유기발광소자와 플렉시블 광전소자의 전극으로 적용하기 위하여 선형 대항 타겟 스퍼터(Linear facing target sputter) 시스템을 이용하여 성막하였고, ITO/Ag/ITO 다층박막의 전기적, 광학적, 구조적 특성을 분석하였다. 선형 대항 타겟 스퍼터 시스템은 강한 일방항의 자계와 타겟에 걸린 음극에 의해 전자의 회전, 왕복 운동이 가능해 마주보는 두 ITO 타겟 사이에 고밀도의 플라즈마를 구속 시켜 플라즈마 데미지 없이 산화물 박막을 성막시킬 수 있는 장치이다. 대항 타겟 스퍼터 시스템을 이용하여 성막한 ITO 전극을 DC power, working pressure, Ar/O2 ratio 에 따른 특성을 각각 분석하였다. glass 기판위에 최적화된 ITO 전극을 bottom layer로 두고, bottom ITO layer 위에 thermal evaporation 을 이용하여 Ag 박막을 6~20nm의 조건에 따라 두께를 다르게 성막하고, Ag 박막을 성막한 후에 다시 bottom ITO 전극과 같은 조건으로 ITO 전극을 top layer로 성막 하였다. 두 비정질의 ITO 전극 사이에 매우 앓은 Ag 박막을 성막 함으로 해서 glass 기판위에 ITO/Ag/ITO 다층 박막전극은 매우 낮은 저항과 높은 투과도를 나타낸다. ITO/Ag/ITO 박막의 전기적 광학적 특성을 보기 위해 hall measurement와 UV/visible spectrometer 분석을 각각 진행하였다. ITO/Ag/ITO 다층 박막 전극이 매우 얇은 두께임에도 불구하고 $4\Omega$/sq.의 낮은 면저항과 85%의 높은 투과도를 나타내는 이유는 ITO/Ag/ITO 전극 사이에 있는 Ag층의 표면 플라즈몬 공명 (SPR) 현상으로 설명할 수 있다. ITO/Ag/ITO 전극의 Ag의 거동을 분석 하기위해 FESEM분석과 synchrotron x-ray scattering 분석을 하였다. ITO/Ag/ITO 전극의 Ag층이 islands의 모양에서 연속적으로 연결되는 변화과정 중에 SPR현상이 일어남을 알 수 있다. 여기서, 대항 타겟 스퍼터 시스템을 이용하여 성막한 ITO/Ag/ITO 다층박막을 OLED 또는 inverted OLEDs의 top 전극으로의 적용 가능성을 보이고 있다.

  • PDF

BS/channeling studies on the heteroepitaxially grown $Y_2O_3$ films on Si substrates by UHV-ICB deposition (실리콘 기판 위에 UHV-ICB 증착법으로 적층 성장된 $Y_2O_3$박막의 BS/channeling 연구)

  • 김효배;조만호;황보상우;최성창;최원국;오정아;송종한;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.235-241
    • /
    • 1997
  • The crystallinity and the structure of heteroepitaxially grown $Y_2O_3$ films on the silicon substrates deposited by Ultra High Vacuum Ionized Cluster Beam(UHV-ICB) were investigated by Back-scattering Spectroscopy(BS)/channeling. The channeling minimum values, $X_{min}$, of the $Y_2O_3$ films deposited by other methods were 0.8~0.95 up to the present, which indicates amorphous or highly polycrystalline nature of the $Y_2O_3$ films. On the contrary, the channeling minimum value of heteroepitaxially grown $Y_2O_3$ films on Si(100) and Si(111) deposited by UHV-ICB are 0.28 and 0.25 respectively. These results point out fairly good crystalline quality. It is also observed that the top region of $Y_2O_3$ films have less crystalline defects than the bottom region regardless of the crystal direction of the Si substrates. The axis of $Y_2O_3$<111> epitaxially grown on Si(111) is tilt by $0.1^{\circ}$ with respect to Si<111>. That of $Y_2O_3$<110> on Si(100) is parallel to the Si<001>. The $Y_2O_3$ film on Si(100) grew with single domain structure and that on Si(111) grew with double domain structure. From the result of oxygen resonance BS/channeling, the oxygen atoms in heteroepitaxially grown $Y_2O_3$ film on Si(111) substrate have the crystallinity, but that on Si(100) shows almost channeling amorphous state.

  • PDF

Fabrication and Catalysis of $SiO_2$-Coated Ag@Au Nanoboxes

  • Lee, Jae-Won;Jang, Du-Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.588-588
    • /
    • 2013
  • Nanoscale noble-metals have attracted enormous attention from researchers in various fields of study because of their unusual optical properties as well as novel chemical properties. They have possible uses in diverse applications such as devices, transistors, optoelectronics, information storages, and energy converters. It is well-known that nanoparticles of noble-metals such as silver and gold show strong absorption bands in the visible region due to their surface-plasmon oscillation modes of conductive electrons. Silver nanocubes stand out from various types of Silver nanostructures (e.g., spheres, rods, bars, belts, and wires) due to their superior performance in a range of applications involvinglocalized surface plasmon resonance, surface-enhanced Raman scattering, and biosensing. In addition, extensive efforts have been devoted to the investigation of Gold-based nanocomposites to achieve high catalytic performances and utilization efficiencies. Furthermore, as the catalytic reactivity of Silver nanostructures depends highly on their morphology, hollow Gold nanoparticles having void interiors may offer additional catalytic advantages due to their increased surface areas. Especially, hollow nanospheres possess structurally tunable features such as shell thickness, interior cavity size, and chemical composition, leading to relatively high surface areas, low densities, and reduced costs compared with their solid counterparts. Thus, hollow-structured noblemetal nanoparticles can be applied to nanometer-sized chemical reactors, efficient catalysts, energy-storage media, and small containers to encapsulate multi-functional active materials. Silver nanocubes dispersed in water have been transformed into Ag@Au nanoboxes, which show highly enhanced catalytic properties, by adding $HAuCl_4$. By using this concept, $SiO_2$-coated Ag@Au nanoboxes have been synthesized via galvanic replacement of $SiO_2$-coated Ag nanocubes. They have lower catalytic ability but more stability than Ag@Au nanoboxes do. Thus, they could be recycled. $SiO_2$-coated Ag@Au nanoboxes have been found to catalyze the degradation of 4-nitrophenol efficiently in the presence of $NaBH_4$. By changing the amount of the added noble metal salt to control the molar ratio Au to Ag, we could tune the catalytic properties of the nanostructures in the reduction of the dyes. The catalytic ability of $SiO_2$-coated Ag@Au nanoboxes has been found to be much more efficient than $SiO_2$-coated Ag nanocubes. Catalytic performances were affected noteworthily by the metals, sizes, and shapes of noble-metal nanostructures.

  • PDF

Impact of Group Delay in RF BPF on Impulse Radio Systems (임펄스 라디오 시스템에서 RF 대역 통과 필터의 군지연 영향 분석)

  • Myoung Seong-Sik;Kwon Bong-Su;Kim Young-Hwan;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.380-388
    • /
    • 2005
  • This paper presents analysis results of the effects of RF filter characteristics on the system performance of impulse radio. The impulse radio system transmits modulated pulses having very short time duration and information can be extracted in receiver side based on cross-correlation between received and transmitted pulses. Accordingly, the pulse distortion due to in-band group delay variation can cause serious system performance degradation. In general, RF bandpass filters inevitably cause group delay difference to the signal passing through the filter which is proportional to its skirt characteristic due to its resonance phenomenon. For time as well as frequency domain analysis, small signal scattering parameter $S_{21}$ and its Fourier transform are used to characterize output pulse waveform under the condition that the input and output ports are matched. The output pulse waveform of the filter is predicted based on convolution integral between input pulse and filter transfer function, and resulting BER performances in the BPM and PPM based impulse radio system are calculated.

Study on frequency response of implantable microphone and vibrating transducer for the gain compensation of implantable middle ear hearing aid (이식형 마이크로폰과 진동체를 갖는 인공중이의 이득 보상을 위한 주파수 특성 고찰)

  • Jung, Eui-Sung;Seong, Ki-Woong;Lim, Hyung-Gyu;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • ACROSS device, which is composed of an implantable microphone, a signal processor, and a vibrating transducer, is a fullyimplantable middle ear hearing device(F-IMEHD) for the recovery of patients with hearing loss. And since a microphone is implanted under skin and tissue at the temporal bones, the amplitude of the sound wave is attenuated by absorption and scattering. And the vibrating transducer attached to the ossicular chain caused also the different displacement from characteristic of the stapes. For the gain control of auditory signals, most of implantable hearing devices with the digital audio signal processor still apply to fitting rules of conventional hearing aid without regard to the effect of the implanted microphone and the vibrating transducer. So it should be taken into account the effect of the implantable microphone and the vibrating transducer to use the conventional audio fitting rule. The aim of this study was to measure gain characteristics caused by the implanted microphone and the vibrating transducer attached to the ossicle chains for the gain compensation of ACROSS device. Differential floating mass transducers (DFMT) of ACROSS device were clipped on four cadaver temporal bones. And after placing the DFMT on them, displacements of the ossicle chain with the DFMT operated by 1 $mA_{peak}$ current was measured using laser Doppler vibrometer. And the sensitivity of microphones under the sampled pig skin and the skin of 3 rat back were measured by stimulus of pure tones in frequency from 0.1 to 8.9 kHz. And we confirmed that the microphone implanted under skin showed poorer frequency response in the acoustic high-frequency band than it in the low- to mid- frequency band, and the resonant frequency of the stapes vibration was changed by attaching the DFMT on the incus, the displacement of the DFMT driven with 1 $mA_{rms}$ was higher by the amount of about 20 dB than that of cadaver's stapes driven by the sound presssure of 94 dB SPL in resonance frequency range.