• Title/Summary/Keyword: resonance frequency analysis

Search Result 984, Processing Time 0.033 seconds

Vibration Analysis of wind turbine gearbox with frequency response analysis (주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석)

  • Park, Hyunyong;Park, Junghun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

Finite Element Analysis for Satellite Antenna Structures Subject to Forced Sinusoidal Vibration (위성 안테나 구조물의 정현파 강제 진동에 대한 유한 요소 해석)

  • Shin, Won-Ho;Oh, Il-Kon;Han, Jae-Hung;Oh, Se-Hee;Lee, In;Kim, Chun-Gon;Park, Jong-Heung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.13-18
    • /
    • 2001
  • This paper deals with finite element analysis for free vibration and forced sine vibration of Ka- and Ku- bend antenna structures using MSC/PATRAN/NASTRAN. The structures are designed to satisfy minimum resonance frequency requirement in order to decouple the dynamic interaction of the satellite with the spacecraft bus structure. From the forced sinusoidal vibration, we have observed output acceleration versus input in X-,Y- and Z- direction, based on base excitation using large mass method. The results of finite elements analysis can be used as the reference data for the experimental test of satellite antenna, resulting in the reduction of cost and time by predicting and complementing experimental data.

  • PDF

Design of a Side Mirror for Passenger Vehicle Based on Vibration Characteristics (진동 특성을 고려한 승용차용 사이드 미러의 설계)

  • Son, Sang-Uk;Son, Kwon
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.703-713
    • /
    • 1999
  • A side mirror is an important safety tool with which the driver can observe objects out of sight. This paper presents an organized design technology for the side mirror of improved vibration characteristics. Resonance response to forced vibration is critical to observability through the mirror to be designed. This study aims at the reduction of vibration level by the modification of mirror structures and consequent effects are predicted by computer simulations. We used a three-dimensional solid modeling and the modal and frequency analysis ; Pro/Engineer is used as a solid modeler; Pro/Mechanica for vibration analysis. The simulation results are compared with those obtained in experiemnts to check the validity by the three-dimensional modeling. The design technique of side mirror has been established and found to be effective in vibration analysis of redesigned parts.

  • PDF

Design of Friction Dampers for Seismic Response Control of a SDOF Building (단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계)

  • Min, Kyung-Won;Seong, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.

The Vibration Characteristic Analysis by Mode Variation of Ring Type Ultrasonic Motor (링형 초음파모터의 모드선정에 따른 진동특성 해석)

  • 윤신용;백수현;김현일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.309-317
    • /
    • 2004
  • This paper suggested the vibration characteristic improvement by variation mode of ring type ultrasonic motor. Design for the piezoelectric ceramic and elastic body of stator were calculated by the finite element method(FEM) that consider the resonance frequency, vibration mode and coupling efficiency etc. Through the result of vibration analysis from 6 order mode to 8 mode, the 7 order mode was gained very an excellent results that it was the coupling efficient, minimum power loss and bending vibration value. Here over 7 order mode, this paper was acquired that an output current for input voltage was very a large increased results. The result of vibration calculation, from thickness 0.5[mm] to 2[mm], knew the fact that the vibration displacement at 0.5[mm] is an high value too. From such result, this paper was manufactured the ultrasonic motor of outer diameter 5O[mm] , inter 22[mm] having the about 43.86[KHz] resonance frequency. We have gated that a simulation result is 42.2[KHz] and an experiment result is 43.86[KHzl The propriety of this paper was established though comparison. investigation of simulation and experiment result.

RESONANCE FREQUENCY ANALYSIS OF IMPLANTS WITH ANODIZED SURFACE OXIDES

  • Choi Jeong-Won;Heo Seong-Joo;Chang Ik-Tae;Koak Jai-Young;Han Jong-Hyun;Kim Yong-Sik;Lee Seok-Hyung;Yim Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.294-300
    • /
    • 2004
  • The present experimental study was designed to address two issues. The first was to investigate whether oxidation voltage of titanium implants influenced bone tissue responses after an in vivo implantation. The second aim was to investigate secondary stability change after 1 to 3months period. Screw-shaped implants with a wide range of oxide properties were prepared by electrochemical oxidation methods, where the oxide thickness varied in the range of $3-15{\mu}m$. The micro structure revealed pore sizes of $1-3{\mu}m$, the crystal structures of the titanium oxide were amorphous, anatase and a mixture of anatase and rutile type. Bone tissue responses were evaluated by resonance frequency measurements that were undertaken 1 to 3months after insertion in the rabbit tibia. It was concluded that no statistical difference of RFA values was found between the groups, RFA gains after Imonth and 3months were calculated.

Bidirectional Motion of the Windmill Type Ultrasonic Linear Motor (풍차형 초음파 선형 모터의 양방향 운동)

  • 이재형;박태곤;정영호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.484-489
    • /
    • 2003
  • In this paper, a single phase driven piezoelectric motor design was presented for linear motion Two metal/ceramic composite actuators, a piezoelectric ring which was bonded to a metal endcap from one side, were used as the active elements of this motor. The motor was composed of a piezoelectric ceramic, a metal ring which has 4 arms, and a guider. Motors with 30 [mm] and 35 [mm] diameter were studied by finite element analysis and experiments. As results, the maximum speed of motor was obtained at resonance frequency. When the applied voltage of the motor increased, the speed was increased. Also, bidirectional motion of the motor was achieved by combining two motors which have different resonance frequency. But the characteristics of bidirectional motion were not equaled, because of the problem of reproduction on the fabrication and the experiment. If present motor is used at the auto-zoom device of a camera, it will have much advantage. Because the direct linear motion can be achieved with a simple structure of motor and no gearbox of total system.

The Property Analysis of Ceramic Metal-Halide Lamp Considering Acoustic Resonance Phenomenon and Design of Inverter by the PSpice Simulation (음향 공명 현상을 고려한 세라믹 메탈핼라이드의 특성 분석과 PSpice 시뮬레이션을 통한 인버터 설계)

  • Jang, Hyeok-Jin;Kim, Nam-Goon;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1989-1994
    • /
    • 2009
  • This study purposes are improvement of system (lamp & ballast) efficacy with and optical characteristics through the developed ceramic arc tube. The designed electronic ballast is substituted for conventional magnetic ballast. These electric signal and optical, thermal characteristics through the improving efficacy of lighting system compared with conventional magnetic ballast. properties of lamp by driving method is researching in ballast. Particularly, electronic ballasts, which improved against weakness of Magnetic Ballast, are researching and applying to control of ceramic metal-halide lamp. but One major limitation is the acoustic resonance problem in CMH lamps at high-frequency operation. In order to avoid acoustic resonance, driving frequency decided 21[kHz]. Before discharge in this paper. The PSpice simulation result obtained sufficient voltage gain and the ignition voltage obtained over 3[kV] at 75[kHz]. After discharge, driving voltage obtained approximately 90[Vrms] at 21[kHz].

Analysis on the Forced Oscillation of Nonlinear Oscillators (비선형 진동자의 강제 진동에 관한 해석)

  • Karng, S.;Lee, J.;Jeon, J.;Kwak, H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.585-590
    • /
    • 2000
  • Problems involved in the numerical analysis on the forced oscillation of nonlinear oscillators such a microbubble oscillation under ultrasound and Duffing oscillator were discussed. One of the problems is proper choice of the time scale of the driving force. which is related to the numerical artifacts due to the mismatch between the natural frequency of an oscillator(or bubble) and the characteristic frequency of the applied force. Such problem may occur in a nonlinear oscillator whose behavior is crucially dependent on the frequency of the applied force. The artificial resonance problem during the numerical evaluation of such nonlinear systems was also discussed.

  • PDF

Structural Strength Analysis of ATV Knuckle (ATV 너클의 구조강도 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.137-144
    • /
    • 2013
  • This study analyzes structural analysis with fatigue and natural frequency on ATV knuckle. The maximum equivalent stresses are happened at the end of knuckle in case of model 1, 2 and 3. As these stresses are below the allowable stress, these models can be stable structurally. The fatigue damage possibility at model 1 becomes more than model 2 and 3. Model 2 or 3 has more durability than model 1 at fatigue. As the resonances are happened at the frequency more than 2000 Hz in case of model 1, 2 and 3, there is no resonance possibilities at real driving. Prevention against damage and durability prediction on automotive chassis parts can be effectively improved by applying this study result on knuckle and improving structural strength.