• Title/Summary/Keyword: resonance frequencies

Search Result 645, Processing Time 0.029 seconds

Simulation of a piezoelectric flextentional deep-water sonar transducer using a coupled FE-BEM (결합형 유한요소-경계요소 기법을 사용한 심해저용 압전형 유연성 쏘나 변환기의 시뮬레이션)

  • Jarng Soon Suck;Lee Je Hyeong;Ahn Heung Gu;Choi Heun Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.218-223
    • /
    • 1999
  • A piezoelectric flextentional deep-water sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with extern리 electrical excitation conditions as well as external acoustic pressure loading conditions. Different results are available such as steady-state frequency response for RX and TX, displacement modes, directivity patterns, back-scattering patterns, resonant frequencies, bandwidths, quality factors, transmitting voltage (TV) responses, input receiving sensitivity (RS) responses. White the present barrel-stave typed sonar transducer of the piezoelectric material is being simulated, the external surface of the transducer is modified in order to allow the same water pressure to be applied to the inner and the outer surfaces of the transducer. With this modification for deep-water application, the resonance frequency of the modified flextentional sonar transducer becomes much lower than that of the unmodified flextentional sonar transducer. The results of the present sonar transducer modelling are also compared with those of a commercial package such as ATILA.

  • PDF

An Identification Method for Complex-Valued Material Properties of Piezoelectric Ceramics (압전 세라믹의 복소 재료 정수 규명)

  • Joh, Chee-Young;Seo, Hee-Seon;Kim, Dae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.83-88
    • /
    • 1995
  • The common practice for the identification of piezoelectric properties is based on the use of immittance of a resonator with a certain geometry and poling direction. In this paper, a new method is suggested to identify the complex-valued piezoelectric material constants. This method Is based on the minimization of differences between the analytical immittance and the experimental measurement of resonator. Non-linear minimization problems are formulated to find out the unknown properties relevant to the resonators. The immittance data used for identification are measured at a number of frequencies which cover the vicinity of resonance frequency and the low frequency region. To illustrate the proposed technique, the complex-valued coefficients are identified for a typical PZT4 ceramic composition.

  • PDF

The fabrication of 2GHz Circulator using $Y_{3-2x}$ $Ca_x$S $n_x$F $e_{3.5}$A $l_{1.5}$ $O_{12}$ Garnet ( $Y_{3-2x}$ $Ca_x$S $n_x$F $e_{3.5}$A $l_{1.5}$ $O_{12}$ 가네트 자성체를 이용한 2GHz 대 서큘레이터 구현)

  • 박정래;김태홍;전동석;한진우
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.14-21
    • /
    • 1997
  • This study was conducte dto fabricate 2GHz circulator using Ca,Sn substituted UIG(yttrium iron garnet)ceramics. When the electric, magnetic and microwave properties were measured in Ca, Sn substituted YIG, the measured perimittivity and perfmeability in microwave frequencies were 16.25, 0.8964. For $Y_{2.4}$C $a_{0.3}$A $n_{0.3}$F $e_{3.5}$A $l_{1.5}$ $O_{12}$ garnet ceramics sintered at 1400.deg. C, the ferrimagnetic resonance line width (.DELTA.H) at 10GHz was 53 Oe and saturation magnetization was 375G. The strip-line circulator was simulated with 3-D FEM (finite element method) software and designed at the center frequency of 2GHz. The fabricated strip-line junction circulator using above YIG ceramics had insertion loss of 1.271dB, return loss of 23.843dB, isolation of 21.751dB at the center frequency 1.855GHz.z.z.z.z.z.z.

  • PDF

The Magnetic and Microwave Absorbing Characteristics of Ni-Zn Ferrite Composites (니켈-아연 페라이트복합재의 자기적특성과 전파흡수특성)

  • 조성백;오재희
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 1993
  • The relationship between magnetic parameter and microwave absorbing performance evaluation factor of electomagnetic wave absorber such as matching frequency, matching thickness were investigated for Ni-Zn ferrite composites. It was identified that the maximum value of ${\mu}_{r}$" is shift to low frequency with decrese Ni/Zn ratio and the value of ${\mu}_{r}$" is maximum in the case of Ni/Zn=1. All Ni-Zn ferrite composites in this study have two matching frequencies in 1-12 GHz frequency. It can be suggested that $f_{m1}$ is proportional to resonance frequency and $f_{m2}$ is proportional to the saturation magnetization.

  • PDF

Study on Noise Control for Piping System of BFP in a Power Plant (화력발전소 보일러 급수용 펌프 배관계의 이상소음 저감에 관한 연구)

  • 양경현;조철환;배춘희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.490-494
    • /
    • 2004
  • The purpose of this paper was to identify the mechanism that caused abnormal vibration and noise on the piping system connected to discharge flow of BFP(Boiler Feed water Pump) in a coal fired power plant, and to develop the device that can reduce the level of abnormal vibration and noise. Major results of this project can be summarized as follows: First, we analyzed the acoustic mode for the discharge piping of BFP to trace a path of the noise, and assumed that noise and vibration on the piping system can be related with length of pipe. Second, a minimized model of the piping system was set up to simulate abnormal vibration and noise within the specific range of operating frequencies, and as a result we confirmed that the acoustic mode affected the piping system considerably. Finally the test device which can reduce the level of abnormal noise and vibration was built to verify validity applying for the piping system. Then we concluded that the noise and vibration generated from the piping system was attributed to the acoustic resonance in piping system, and so developed new device which can reduce the level of noise and vibration under 40%. Put Abstract here.

  • PDF

The Operation and Vibration Characteristics of Tail-fan Performance Test System (테일홴 성능시험장치의 운용과 진동특성)

  • Song, Keun-Woong;Kim, Jun-Ho;Kang, Hee-Jung;Rhee, Wook;Sim, Joung-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.421-428
    • /
    • 2005
  • This paper described operation and vibration characteristics of a 'tail-fan' anti-torque performance test system. KARI (Korea Aerospace Research Institute) developed a 'tail-fan' anti-torque system of a helicopter and a performance test-rig to test the performance of the tail-fan. The performance test-rig consists of driving, supporting and rotating parts. In the process of the performance test, firstly, operation test of the test-rig were carried out to verify design specifications. Secondly, natural frequencies of fan blade and test-rig were measured respectively. Lastly, to find the operation rotating speed for the performance test, vibration test were carried out using accelerometers on tail gear box. The performance test conditions of the tail-fan to avoid a resonance were found from the fan-plot and vibration test results. The tail-fan performance tests were well done safely.

Phonetic meaning of clarity and turbidity (청탁의 음성학적 의미)

  • Park, Hansang
    • Phonetics and Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.77-89
    • /
    • 2017
  • This study investigates the phonetic meaning of clarity and turbidity(淸濁) that has been used in psychoacoustics, musicology, and linguistics in both the East and the West. With a view to clarifying the phonetic meaning of clarity and turbidity, this study conducts three perception tests. First, 34 subjects were asked to take one of Clear and Turbid by forced choice for 5 pure and complex tones, respectively, ranging from A2 to A6 differing by octave. Second, they were asked to select between the two choices for 25 pure and complex tones, respectively, ranging from A2 to A4 differing by semitone. Third, they were asked to opt for one of the two choices for 8 different vowels of different formant and fundamental frequencies. Results showed that there is a certain range of tone which is perceived as clear, that clarity level increases as fundamental frequency increases, and that pure tones have a higher level of clarity than complex ones, fundamental frequency being equal. Results also showed that vocal tract resonance enhances clarity level on the whole, and that lower vowels have a higher level of clarity than higher ones. This study is significant in that it demonstrates that clarity level is proportional to fundamental frequency and the first formant frequency, all else being equal.

A New Model and Optimal Pole-Placement Control for the Suspension System of Macpherson Type (Macpherson형 현가장치의 새로운 모델링과 최적극배치 제어)

  • 홍금식;전동섭;김철민;유완석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.713-721
    • /
    • 1998
  • In this paper a new modeling and an optimal pole-placement control for the suspension system of Macpherson type are investigated. The rotational motion of the unsprung mass is emphasized in the new modeling. The two generalized coordinates selected in the new model are the vortical displacement of sprung mass and the angular displacement of control arm. Both variables are measured from their static equilibrium points. It is shown that the conventional model is a special case of the new model since the transfer function of the new model coincides with that of the conventional one if the lower support point of the shock absorber is located at the mass center of the unsprung mass. It is also shown that the resonance frequencies of the new model agree better with experimental results. Therefore, the new model is more general in the sense that it Provides an extra degree of freedom in determining the plant model for control system design. An optimal pole-placement control which combines LQ control and pole-placement technique is applied to the new model. Simulations are provided.

  • PDF

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism(II) (4절 링크 기구의 동적 변형 해석 (II))

  • 조선휘;박종근;주동인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.910-923
    • /
    • 1992
  • Experimental verification of numerical results is conducted by measuring the dynamic strains of mid-points of the coupler and the lever for the 4-bar linkage mechanism with rigid bearing and flexible bearing, respectively. For the axial strain of lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones, however, the numerical results excluding geometric stiffness almost agree with the experimental ones for the axial strain of coupler mid-point. It is supposed that these phenomena should be caused by the fact that the motion of the coupler is more complicated than of the lever. The signals of dynamic strains of coupler and lever mid-points, measured by strain gages, are transformed into frequency domain by fast fourier transformer. From this experiment, the lst resonance frequencies of the coupler and the lever are obtained. It is made clear that the former almost agrees with the fundamental and the latter the 2nd mode natural frequency of the mechanism system calculated by numerical analysis.