• Title/Summary/Keyword: resolution correction

Search Result 455, Processing Time 0.023 seconds

Automatic Generation of GCP Chips from High Resolution Images using SUSAN Algorithms

  • Um Yong-Jo;Kim Moon-Gyu;Kim Taejung;Cho Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.220-223
    • /
    • 2004
  • Automatic image registration is an essential element of remote sensing because remote sensing system generates enormous amount of data, which are multiple observations of the same features at different times and by different sensor. The general process of automatic image registration includes three steps: 1) The extraction of features to be used in the matching process, 2) the feature matching strategy and accurate matching process, 3) the resampling of the data based on the correspondence computed from matched feature. For step 2) and 3), we have developed an algorithms for automated registration of satellite images with RANSAC(Random Sample Consensus) in success. However, for step 1), There still remains human operation to generate GCP Chips, which is time consuming, laborious and expensive process. The main idea of this research is that we are able to automatically generate GCP chips with comer detection algorithms without GPS survey and human interventions if we have systematic corrected satellite image within adaptable positional accuracy. In this research, we use SUSAN(Smallest Univalue Segment Assimilating Nucleus) algorithm in order to detect the comer. SUSAN algorithm is known as the best robust algorithms for comer detection in the field of compute vision. However, there are so many comers in high-resolution images so that we need to reduce the comer points from SUSAN algorithms to overcome redundancy. In experiment, we automatically generate GCP chips from IKONOS images with geo level using SUSAN algorithms. Then we extract reference coordinate from IKONOS images and DEM data and filter the comer points using texture analysis. At last, we apply automatically collected GCP chips by proposed method and the GCP by operator to in-house automatic precision correction algorithms. The compared result will be presented to show the GCP quality.

  • PDF

URBAN ENVIRONMENTAL QUALITY ANALYSIS USING LANDSAT IMAGES OVER SEOUL, KOREA

  • Lee, Kwon-H.;Wong, Man-Sing;Kim, Gwan-C.;Kim, Young-J.;Nichol, Janet
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.556-559
    • /
    • 2007
  • The Urban Environmental Quality (UEQ) indicates a complex and various parameters resulting from both human and natural factors in an urban area. Vegetation, climate, air quality, and the urban infrastructure may interact to produce effects in an urban area. There are relationships among air pollution, vegetation, and degrading environmental the urban heat island (UHI) effect. This study investigates the application of multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air quality and UHI intensity in Seoul from 2000 to 2006 in fine resolution (30m) using the emissivity-fusion method. The Haze Optimized Transform (HOT) correction approach has been adopted for atmospheric correction on all bands except thermal band. The general UHI values (${\Delta}(T_{urban}-T_{rural})$) are 8.45 (2000), 9.14 (2001), 8.61 (2002), and $8.41^{\circ}C$ (2006), respectively. Although the UHI values are similar during these years, the spatial coverage of "hot" surface temperature (>$24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84(2002), and 0.89 (2006), respectively. Air quality is shown to be an important factor in the spatial variation of UEQ. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

  • PDF

Kinematic Correction and a Design for Velocity Trajectory to Reduce an Odometer Error of Wheeled-Mobile Robots (구륜 이동 로봇의 주행오차 감소를 위한 기구학적 보정과 속도궤적의 설계)

  • Kim, Jong-Su;Mun, Jong-U;Park, Jong-Guk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.9-18
    • /
    • 2000
  • This paper presents methods for reducing odometer errors caused by kinematic imperfections in wheeled mobile robots. Wheel diameters and wheelbase are corrected by using encoders without landmarks. And a new velocity trajectory is proposed that compensates for an orientation error due to acceleration-resolution constraints on motor controllers. Based on this velocity trajectory, the wheel velocity of one out of two driven wheels may be changed by the traveled distance of the mobile robot. It is shown that a wheeled mobile robot can't move along a straight line exactly, even if kinematic correction are achieved perfectly, and this phenomenon is attributable to acceleration-resolution constraints on motor controllers. We experiment on a wheeled mobile robot with 2 d.o.f. and discuss the results.

  • PDF

Development of Brightness Correction Method for Mosaicking UAV Images (무인기 영상 병합을 위한 밝기값 보정 방법 개발)

  • Ban, Seunghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1071-1081
    • /
    • 2021
  • Remote Sensing using unmanned aerial vehicles(UAV) can acquire images with higher time resolution and spatial resolution than aerial and satellite remote sensing. However, UAV images are photographed at low altitude and the area covered by one image isrelatively narrow. Therefore multiple images must be processed to monitor large area. Since UAV images are photographed under different exposure conditions, there is difference in brightness values between adjacent images. When images are mosaicked, unnatural seamlines are generated because of the brightness difference. Therefore, in order to generate seamless mosaic image, a radiometric processing for correcting difference in brightness value between images is essential. This paper proposes a relative radiometric calibration and image blending technique. In order to analyze performance of the proposed method, mosaic images of UAV images in agricultural and mountainous areas were generated. As a result, mosaic images with mean brightness difference of 5 and root mean square difference of 7 were avchieved.

Surgical Correction of Canine Brachycephalic Syndrome Including Resection of Elongated Soft Palate and Everted Laryngeal Saccules Using Harmonic Scalpel: A Retrospective Study of 21 Cases

  • Shin, Jung-In;Kim, Minkyung;Kim, Jong-Hoon;Lee, Chaeyeong;Kim, Young-Hwan;You, Young-Sung;Lee, Dong-Bin;Lee, Jae-Hoon
    • Journal of Veterinary Clinics
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • The current, retrospective study aimed to assess the short-term prognosis and postoperative complications associated with the surgical correction of elongated soft palate using harmonic scalpel and to compare the postoperative complications associated with the application of harmonic scalpel and traditional surgery using Metzenbaum scissors. Harmonic scalpel was used to perform staphylectomy in 21 dogs. A total of ten dogs underwent sacculectomy; six dogs with harmonic scalpel and four dogs using Metzenbaum scissors. Stenotic nares were corrected by wedge resection. Postoperative complications were recorded through monitoring and radiographic examinations. Telephone interviews were conducted on the first, third, and seventh day after discharge and continued until the resolution of postoperative complications. Postoperative edema at the surgical site was identified and mitigated within a day or two. Snoring and dyspnea improved dramatically in the group that underwent staphylectomy alone. Moreover, three dogs presented with postoperative gastrointestinal complications, especially retching. The symptoms persisted for seven days and ten days in two dogs that underwent sacculectomy with harmonic scalpel and for two days in one dog that underwent sacculectomy with Metzenbaum scissors. The clinical signs and symptoms of brachycephalic syndrome disappeared without recurrence. Harmonic scalpel provides a hemostatic effect during staphylectomy, is convenient, and does not cause postoperative complications. Conversely, the use of harmonic scalpel during sacculectomy necessitated a longer period for the resolution of complications without any significant hemostatic efficacy, compared to traditional surgery.

Comparison of Surface Temperatures between Thermal Infrared Image and Landsat 8 Satellite (열적외 영상과 Landsat 8 위성으로부터 관측된 지표면 온도 비교)

  • Cho, Chaeyoon;Jee, Joon-Bum;Park, Moon-Soo;Park, Sung-Hwa;Choi, Young-Jean
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2016
  • In order to analyze the surface temperature in accordance with the surface material, surface temperatures between Thermal InfraRed Image (TIRI) and Landsat 8 satellite observed at the commercial area (Gwanghwamun) and residential area (Jungnang) are compared. The surface temperature from TIRI had applied atmospheric correction and compared with that from Landsat 8. The surface temperatures from Landsat 8 at Gwanghwamun and Jungnang are underestimated in comparison with that from TIRI. The difference of surface temperature between the two methods is greater in summer than in winter. When the analysis area was divided into detailed regions, depending on the material and the position of the surface, correlation of surface temperature between TIRI with Landsat 8 is as low as 0.29 (Gwanghwamun) and 0.18 (Jungnang), respectively. The results were caused from the resolution difference between the two methods. While the surface temperatures of each zone from Landsat 8 were observed almost constant, high-resolution TIRI observed relatively precise surface temperatures. When the each area was averaged as one space, correlation of surface temperature between TIRIs and Landsat 8 is more than 0.95. The spatially averaged surface temperature is higher at Jungnang, representing residential areas, than at Gwanghwamun, representing commercial areas. As a result, the observation of high resolution is required in order to observe the precise surface temperature. This is because it appears that the spatial distribution of the various surface temperature in the range of micro-scale according to the conditions of the ground surface.

Image Mosaic using Multiresolution Wavelet Analysis (다해상도 웨이블렛 분석 기법을 이용한 영상 모자이크)

  • Yang, In-Tae;Oh, Myung-Jin;Lee, In-Yeub
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.61-66
    • /
    • 2004
  • By the advent of the high-resolution Satellite imagery, there are increasing needs in image mosaicking technology which can be applied to various application fields such as GIS(Geographic Information system). To mosaic images, various methods such as image matching and histogram modification are needed. In this study, automated image mosaicking is performed using image matching method based on the multi-resolution wavelet analysis(MWA). Specifically, both area based and feature based matching method are embedded in the multi-resolution wavelet analysis to construct seam line.; seam points are extracted then polygon clipping method are applied to define overlapped area of two adjoining images. Before mosaicking, radiometric correction is proceeded by using histogram matching method. As a result, mosaicking area is automatically extracted by using polygon clipping method. Also, seamless image is acquired using multi-resolution wavelet analysis.

  • PDF

SHADOW EXTRACTION FROM ASTER IMAGE USING MIXED PIXEL ANALYSIS

  • Kikuchi, Yuki;Takeshi, Miyata;Masataka, Takagi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.727-731
    • /
    • 2003
  • ASTER image has some advantages for classification such as 15 spectral bands and 15m ${\sim}$ 90m spatial resolution. However, in the classification using general remote sensing image, shadow areas are often classified into water area. It is very difficult to divide shadow and water. Because reflectance characteristics of water is similar to characteristics of shadow. Many land cover items are consisted in one pixel which is 15m spatial resolution. Nowadays, very high resolution satellite image (IKONOS, Quick Bird) and Digital Surface Model (DSM) by air borne laser scanner can also be used. In this study, mixed pixel analysis of ASTER image has carried out using IKONOS image and DSM. For mixed pixel analysis, high accurated geometric correction was required. Image matching method was applied for generating GCP datasets. IKONOS image was rectified by affine transform. After that, one pixel in ASTER image should be compared with corresponded 15×15 pixel in IKONOS image. Then, training dataset were generated for mixed pixel analysis using visual interpretation of IKONOS image. Finally, classification will be carried out based on Linear Mixture Model. Shadow extraction might be succeeded by the classification. The extracted shadow area was validated using shadow image which generated from 1m${\sim}$2m spatial resolution DSM. The result showed 17.2% error was occurred in mixed pixel. It might be limitation of ASTER image for shadow extraction because of 8bit quantization data.

  • PDF

Investigating the Impact of Random and Systematic Errors on GPS Precise Point Positioning Ambiguity Resolution

  • Han, Joong-Hee;Liu, Zhizhao;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • Precise Point Positioning (PPP) is an increasingly recognized precisely the GPS/GNSS positioning technique. In order to improve the accuracy of PPP, the error sources in PPP measurements should be reduced as much as possible and the ambiguities should be correctly resolved. The correct ambiguity resolution requires a careful control of residual errors that are normally categorized into random and systematic errors. To understand effects from two categorized errors on the PPP ambiguity resolution, those two GPS datasets are simulated by generating in locations in South Korea (denoted as SUWN) and Hong Kong (PolyU). Both simulation cases are studied for each dataset; the first case is that all the satellites are affected by systematic and random errors, and the second case is that only a few satellites are affected. In the first case with random errors only, when the magnitude of random errors is increased, L1 ambiguities have a much higher chance to be incorrectly fixed. However, the size of ambiguity error is not exactly proportional to the magnitude of random error. Satellite geometry has more impacts on the L1 ambiguity resolution than the magnitude of random errors. In the first case when all the satellites have both random and systematic errors, the accuracy of fixed ambiguities is considerably affected by the systematic error. A pseudorange systematic error of 5 cm is the much more detrimental to ambiguity resolutions than carrier phase systematic error of 2 mm. In the $2^{nd}$ case when only a portion of satellites have systematic and random errors, the L1 ambiguity resolution in PPP can be still corrected. The number of allowable satellites varies from stations to stations, depending on the geometry of satellites. Through extensive simulation tests under different schemes, this paper sheds light on how the PPP ambiguity resolution (more precisely L1 ambiguity resolution) is affected by the characteristics of the residual errors in PPP observations. The numerical examples recall the PPP data analysts that how accurate the error correction models must achieve in order to get all the ambiguities resolved correctly.

A Study of Quality Control of Nuclear Medicine Counting System and Gamma Camera (핵의학 계측기기 및 감마카메라의 정도관리 연구)

  • 손혜경;김희중;정해조;정하규;이종두;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2001
  • Purpose: The purpose of this study was to investigate the current status of performing nuclear medicine quality control in korea and to test selected protocols of quality control of nuclear medicine counting system and gamma camera. Materials and Methods: Fifty three hospitals were included to investigate the current status of nuclear medicine quality control in korea. The precision of dose calibrator and thyroid uptake system was measured with Tc-99m 35.52 MBq for 2 minuets and Tc-99m 5.14 MBq for 10 sec every one minute, respectively. The sensitivity of CeraSPECT$^{TM}$ with low energy high resolution parallel hole collimator was measured using two cylindrical phantoms with 15 cm in diameter and 12 cm and 30 cm in heights containing Tc-99m. The correction factor for sensitivity of CeraSPECT$^{TM}$ was calculated using phantom data. The system planar sensitivity, uniformity, count rate and spatial resolution were measured for Varicam gamma camera with low energy high resolution parallel hole collimator using 140 keV centered 20% energy window, 256$\times$256 or 512$\times$512 matrix sizes. Results: The quality control of dose calibrator and well counter were showed poor performance status. On the other hand, The quality control of gamma camera and other systems were showed relatively good performance status. The results of precision of dose calibrator and thyroid uptake system was $\pm$1.4%(<$\pm$5%) and chi^2=29.7(>16.92), respectively. It showed that the sensitivity of CeraSPECT$^{TM}$ was higher in center slices compared with the edge slices. After correction of nonuniform sensitivities for patient data, it showed better results compare with prior to correction. System planar sensitivity of Varicam gamma camera was 4.39 CPM/MBq. The observed count rate at 20% loss was 102,407 counts/sec (head 1), 113,427 counts/sec (head 2), when input count rate was 81,926 counts/sec (head 1), 90,741 counts/sec (head 2). The spatial resolution without scatter medium were 8.16 mm of FWHM and 14.85 mm of FWTM. The spatial resolution with scatter medium were 8.87 mm of FWHM and 18.87 mm of FWTM. Conclusion: It is necessary to understand the importance of quality control and to perform quality control of nuclear medicine devices.vices.

  • PDF