• 제목/요약/키워드: resistive superconducting fault current limiter

검색결과 125건 처리시간 0.041초

자속구속형 초전도 전류제한기의 용량증대를 위한 동작특성 (Operating Characteristics of Capacity Increase in a Flux-Lock Type Superconducting Fault Current Limiter)

  • 남긍현;최효상;박형민;조용선;이나영;한태희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.200-202
    • /
    • 2006
  • We investigated the operating characteristics of a flux-lock type superconducting fault current limiters according to the number of the serial connection each the superconducting element at the additive polarity winding of a transformer. This SFCL consists of two coils wound in parallel on the same iron core, and the secondary coil is connected to the elements in series. Operating characteristics can be controlled by adjusting the inductances and the winding directions of the coils. It turns ratio between the primary and the secondary coils is 63:21. The analysis of voltage, current, and resistance in serial connection each element was performed to increase the applied voltage of flux-lock type SFCL. When the applied voltage was 200/$\sqrt{3}[V_{rms}]$ with three elements connected in seres, the peak value of the line current increased up to 26,24[A]. On the other hands, resistive SFCL increased up to 36.35[A], under the same conditions. This enabled the flux-lock type SFCL to be easy to increase the capacity of power system.

  • PDF

배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성 (Fault current limitation characteristics of the Bi-2212 bulk coil for distribution-class superconducting fault current limiters)

  • 심정욱;김혜림;임성우;현옥배;이해근;박권배;김호민;이방욱;오일성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.639-640
    • /
    • 2006
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter(SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of 200 $V_{rms}$ and fault current of 12 $kA_{rms}$ and 25 $kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of 12 $kA_{rms}$ and 25 $kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}$ within $0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLs.

  • PDF

저항형 고온초전도 소자의 스위칭동작을 이용한 브리지타입 고온초전도 전류제한기의 동작 특성 (Operational Characteristics of Bride Type SFCL Using Switching Operation of Resistive Type HTSC Element)

  • 임성훈;박충렬;이종화;고석철;박형민;최효상;한병성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.83-85
    • /
    • 2004
  • We proposed the bridge type fault current limiter(FCL) using switching operation of high-Tc superconducting(HTSC) thin film. The proposed bridge type FCL consists of HTSC thin film, a diode bridge and a dc reactor. The controller for the operation of an interrupter is required in the conventional bridge type FCL to prevent the continuous increase of fault current after a fault happens. On the other hand, the proposed bridge type FCL can limit the fault current without the interrupter and the controller for its operation by the resistance generated when the gradually increased fault current exceeds HTSC thin film's critical current. We calculated the time when the gradually increased fault current started to be limited by the resistance generated in HTSC thin film after a fault happened and confirmed that it could be dependent on the amplitude of source voltage. The experimental results well agreed with the calculated ones from simulation.

  • PDF

전압 증가에 따른 자속구속형 고온 초전도 전류제한기의 사고전류 제한 특성 (The Fault Current Limiting Characteristics According to Increase of Voltage in a Flux-Lock Type High-Tc Superconducting Fault Current Limiter)

  • 조용선;박형민;임성훈;박충렬;한병성;최효상;현옥배;황종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.93-96
    • /
    • 2004
  • In this paper, we analyzed the current limiting characteristics according to increase of source voltage in the flux-lock type high-Tc superconducting fault current limiter (SFCL). The flux-lock type SFCL consisted of two coils, which were wound in parallel each other through an iron core, and high-Tc superconducting (HTSC) element connected with coil 2 in series. The flux-lock type SFCL has the characteristics better in comparison with the resistive type SFCL because the fault current in the flux-lock type SFCL can be divided into two coils by the inductance ratio of coil 1 and coil 2. The fault current limiting operation of the flux-lock type SFCL can be different due to winding direction of the two coils. The winding method where the decrease of linkage flux between two coils in the accident happens is called the subtractive polarity winding and the winding method in case of the increase of linkage flux is called the additive polarity winding. The fault current limiting experiments according to the source voltage were performed for these two winding methods. Through the comparison and the analysis of the experimental data, we confirmed that the quench time was shorter, irrespective of the winding direction as the source voltage increased and that the fault current and the HTSC's resistance increased as the amplitude of the source voltage increased. The additive polarity winding made the fast quench time and the lower resistance of HTSC element in comparison with the subtractive polarity winding. The fault current of the subtractive polarity winding was larger than that of the additive polarity winding. In conclusion, we found that the additive polarity winding reduced the burden of SFCL because the quench time was shorter and the fault current was smaller than those of the subtractive polarity winding.

  • PDF

고장전류 저감을 위한 초전도 한류기 적용 (SCFL Application for Reducing Fault Current)

  • 김학만;김종율;최상봉;문영환;성기철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.206-208
    • /
    • 2002
  • The transmission system is designed to be protected by 40 kA rate of circuit breaker fer 345 tV system and 31.5 kA and 50 kA rate of circuit breaker for 154 kV system. The short circuit current shows the tendency of exceeding circuit breaker duty for some substations and the tendency will continue if an appropriate countermeasure will not be applied to. In order to solve this problem from the viewpoint of system operation, the 154 kV system is under reconfiguration to be radial systems. This paper presents application effect of resistive and inductive SCFL (Superconducting Fault Current Limiter to Korea power systems. An algorithm of SCFL site decision is suggested.

  • PDF

A Study on the Application Impacts on Korean Power System by Introducing SFCL

  • Kim, Jong-Yul;Park, Heung-Kwan;Yoon, Jae-Young
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권1호
    • /
    • pp.1-6
    • /
    • 2003
  • As power systems grow more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154 ㎸ system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154 ㎸ Superconducting Fault Current Limiter(SFCL) to 154 ㎸ transmission systems is proceeding with implementation slated for after 2010. In this paper, the resistive and inductive SFCLs are applied to re-duce the fault current in Korean power system and their technical and economic impacts are evaluated. The results show that the application of SFCL can eliminate the need to upgrade the circuit breaker rat-ing and the economic potential of SFCL is evaluated positively.

Fabrication and Tests of the 24 kV class Hybrid Superconducting Fault Current Limiter

  • Lee, B.W.;Sim, J.;Park, K.B.;Oh, I.S.;Yim, S.W.;Kim, H.R.;Hyun, O.B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권4호
    • /
    • pp.32-36
    • /
    • 2007
  • We fabricated and tested a novel hybrid superconducting fault current limiter (SFCL) of three-phase $24kV_{rms}/630A_{rms}$ rating. In order to apply conventional resistive SFCLs into electric power systems, the urgent issues to be settled are as follows, such as initial installation price of SFCL, operation and maintenance cost due to ac loss of superconductor and the life of cryostat, and high voltage and high current problems. The ac loss and high cost of superconductor and cryostat system are main bottlenecks for real application. Furthermore in order to increase voltage and current ratings of SFCL, a lot of superconductor components should be connected in series and parallel which resulted in extreme high cost. In addition, the method to quench all components at the same instant needs very sophisticated skill and careful operation. Due to these problems, the practical applications of SFCL were pending. Therefore, in order to make practical SFCL, the price of SFCL should be lowered and should meet the demand of utilities. We designed novel hybrid SFCL which combines superconductor and conventional electric equipment including vacuum interrupter, power fuse and current limiting reactor. The main purpose of hybrid SFCL is to drastically reduce total usage of superconductor by adopting current commutation method by use of superconductor and high fast switch. Consequently, it was possible to get the satisfactory test results using this method, and further works for field tests are in the process.

여자돌입전류의 저감에 의한 전력품질 향상방법 (Improvement of the Power Quality by the Reduction of the Inrush Current)

  • 서훈철;이상봉;김철환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.85-86
    • /
    • 2008
  • This paper analyzes the improvement of the power quality by the reduction of the inrush current. We analyze the existing methods and simulate the segragated point-on-wave closing method selected as the proper method. And we attempts to use the resistive type Superconducting Fault Current Limiter(SFCL) to reduce the transformer inrush current. We simulate the various insertion resistances and analyze the voltage drop. All simulation are performed by EMTP. The simulation results show the validity and effectiveness of a SFCL application and the segragated point-on-wave closing method to reduce the inrush current and improve the power quality.

  • PDF

Quench Characteristics of YBCO Film for Current Limiting Using Magnetic Field

  • 박권배;최효상;김혜림;현옥배;황시돌
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.252-256
    • /
    • 2002
  • We studied YBCO films for current limiting of the resistive type which utilizes a transition from superconducting to normal state caused by exceeding critical current. The films were deposited on sapphire substrates and covered by gold top layer. The current limiting element consists of 2 mm wide YBCO stripes connected in series. A serious problem in using YBCO films for current limiting is inhomogeneities caused by imperfect manufacturing. Therefore simultaneous quench is a difficult problem when elements for current limiting are connected in series. So some researchers have recently proposed using magnetic field and heating for simultaneous quench. We have measured extended exec trim field-current density(E-J) characteristics for current limiting elements of YBCO films in applied magnetic field of 0 - 130 mT. And we have investigated quench characteristics in current limiting elements and between elements of YBCO films in applied magnetic field. The result of the experiments show that the presence of applied magnetic fields induces uniform quench distribution fur the stripes in element at $50V_{rms}$, otherwise non-uniform quenches were observed. And simultaneous quenches between elements were investigated at $150V_{rms}$. We suggest that suppressing the critical current by increased fields due to fault current effectively forced the stripes of higher $J_{c}$(0) to quench, resulting in equalizing quench times.s.s.s.

  • PDF

라인 저항이 포함된 시스템에서 저항형 한류기 허용 전기장 산출 연구 (A Research About Applicable Electric Field Calculation for Resistive Type Superconducting Fault Current Limiter in the System with Line Resistance)

  • 이우승;장재영;최석진;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.971-972
    • /
    • 2011
  • 초전도 저항형 한류기는 계통에서 발생하는 대규모의 사고 전류를 매우 빠른 시간 안에 효과적으로 제한할 수 있어 주목받고 있는 초전도 전력기기이다. 저항형 한류기를 제작할 때 사용되는 초전도 선재의 총 길이는 저항형 한류기의 전체 설계에 있어서 가장 핵심적인 변수중 하나로 기존의 허용전기장을 이용한 방법으로 도출될 수 있다. 하지만 기존의 방법에서는 계통의 라인 저항을 고려하지 않는 가정을 도입 했기 때문에 이를 이용하여 설계할 경우 실제로 시스템에서 요구하는 설계 변수와 큰 차이를 보일 수 있다. 본 논문에서는 라인저항의 영향을 고려한 허용 전기장을 도출하고, 새로 계산된 선재의 길이와 기존의 방법을 이용하여 계산된 선재의 길이를 비교해 봄으로써 보다 정확한 설계의 가능성을 제시한다.

  • PDF