• 제목/요약/키워드: resisting force

검색결과 259건 처리시간 0.027초

풍화암에 시공된 부력저항 앵커의 거동특성 (Characteristics of Anchor Behavior Resisting Buoyancy Forces in the Weathered Rock)

  • 유남재;이근착;정길수;박병수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.698-705
    • /
    • 2005
  • This study contains actual scaled site experiments on mediation factors affecting ultimate pulling force of the buoyancy resisting anchor which is installed underground water level suffering buoyancy force and breaking mechanism. Site buoyancy test selected the buoyancy acting site where acting buoyancy to the station structure since the stream and reservoir is neighboured to the vicinity ground and executed site experiments leading to variation of anchoring length, drilling diameter and tendon diameter at the weathered rock ground. The test result showed that pulling force getting increased more and more proportionate to increase of anchoring length, drilling diameter and tendon diameter, and as a result of analysis for correlations between anchoring length-ultimate limited load and drilling diameter-ultimate load (on the basis of 254mm settlement), modulus of correlation showed very high relation 0.9 and 0.99 respectively and correlation formular showed the limited load is increasing proportionate to cubic meters of anchoring length as well as the ultimate load proportionate to alignment of drilling diameter. It is also showed that limited load increased about 42.5% from 392kN to 559kN as a result of change the tendon diameter to 36mm and 50mm.

  • PDF

휨 저항을 고려한 네일 거동에 대한 수치해석적 분석 (Numerical Analysis of the Nail Behavior Considering Resisting Bending Moment)

  • 전상수;김두섭;장양원
    • 한국지반공학회논문집
    • /
    • 제23권10호
    • /
    • pp.85-96
    • /
    • 2007
  • 쏘일 네일 공법은 기존의 지보공법에 비해 시공의 편리성과 경제성, 안정성이 우수하여 최근 현장에 적용되는 사례가 증가하고 있다. 하지만, 쏘일 네일 공법에 대한 공학적인 접근은 미흡하여 우리나라에서는 지금까지 체계적인 설계 공법이 확립되지 못한 실정이다. 기존의 쏘일 네일 공법 설계에는 네일에 작용하는 전단 저항 및 휨 저항을 고려하지 않았으나, 철근과 시멘트로 구성된 쏘일 네일은 전단 및 휨에 대한 저항을 가지고 있다. 따라서, 본 논문에서는 네일의 전단 및 휨 저항을 고려한 쏘일 네일 보강시 수치해석 프로그램인 $FLAC^{2D}$를 이용해 사면의 안정성을 분석하였다.

Mechanics based force-deformation curve of steel beam to column moment joints

  • Kasar, Arnav A.;Bharti, S.D.;Shrimali, M.K.;Goswami, Rupen
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.19-34
    • /
    • 2017
  • The widespread damage to steel Moment Resisting Frames (MRFs) in past major earthquakes have underscored the need to understand the nonlinear inelastic behaviour of such systems. To assess the seismic performance of steel MRF, it is essential to model the nonlinear force-deformation behaviour of beam to column joints. To determine the extent of inelasticity in a beam to column joint, nonlinear finite element analysis is generally carried out, which is computationally involved and demanding. In order to obviate the need of such elaborate analyses, a simplistic method to predict the force-deformation behaviour is required. In this study, a simple, mechanics driven, hand calculation method is proposed to obtain the forcedeformation behaviour of strong axis beam to column moment joints. The force-deformation behaviour for twenty-five interior and exterior beam to column joints, having column to beam strength ratios ranging from 1.2 to 10.99 and 2.4 to 22, respectively, have been obtained. The force-deformation behaviour predicted using the proposed method is compared with the results of finite element analyses. The results show that the proposed method predicts the force-deformation behaviour fairly accurately, with much lesser computational effort. Further the proposed method has been used to conduct Nonlinear Dynamic Time History Analyses of two benchmark frames; close correspondence of results obtained with published results establishes the usefulness and computational accuracy of the method.

내진 보강된 철골모멘트골조의 취약성 등고선을 통한 성능평가 (Performance Evaluation of Steel Moment Resisting Frames with Seismic Retrofit Using Fragility Contour Method)

  • 김수동;이기학;정성훈;김도현
    • 한국지진공학회논문집
    • /
    • 제17권1호
    • /
    • pp.33-41
    • /
    • 2013
  • Due to a high level of system ductility, steel moment resisting frames have been widely used for lateral force resisting structural systems in high seismic zones. Earthquake field investigations after Northridge earthquake in 1994 and Kobe earthquake in 1995 have reported that many steel moment resisting frames designed before 1990's had suffered significant damages and structural collapse. In this research, seismic performance assessment of steel moment resisting frames designed in accordance with the previous seismic provisions before 1990's was performed. Buckling-restrained braces and shear walls are considered for seismic retrofit of the reference buildings. Increasing stiffness and strength of the buildings using buckling-restrained braces and shear walls are considered as options to rehabilitate the damaged buildings. Probabilistic seismic performance assessment using fragility analysis results is used for the criteria for determining an appropriate seismic retrofit strategy. The fragility contour method can be used to provide an intial guideline to structural engineers when various structural retrofit options for the damaged buildings are available.

일반 모멘트 저항 철골조의 지진 응답 해석 (Earthquake Response Analysis of Ordinary Moment Resisting Steel Frames)

  • 윤명호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제4권1호
    • /
    • pp.36-45
    • /
    • 2004
  • Allowable stress design method have been most widely used in steel structure in Korea. Recently, not only high-rise buildings but also medium or low-rise buildings were designed as steel structure. Most of low-rise steel buildings are designed as ordinary moment resisting frames(MRF). But MRFs don't have any lateral force resisting devices such as bracing in braced frames. This study focuses mainly on nonlinear seismic response analyses of small scale steel frames which will be used later as specimens for the evaluation of MRF's seismic performances. The main parameters of analyses are arrangement of column axis, $P-{\Delta}$ effect, acceleration factor etc. The object of this paper is to estimate the seismic performances of MRFs, which are mostly designed in Korea, through the results of response analyses.

  • PDF

내부 포스트 텐션 플랫 플레이트 슬래브 기둥 접합부의 이력거동 (Cyclic Behavior of Interior Joints in Post Tensioned Flat Plate Slab Systems)

  • 기성훈;한상환;하상수;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.107-110
    • /
    • 2005
  • In general, post tensioned (PT) flat plate slab systems have been used as a Gravity Load Resisting System (GLRS) in buildings. Thus, these systems should be constructed with Lateral Force Resisting Systems (LFRS) such as shear walls and moment resisting frames. When lateral loads such as winds or earthquakes occur, lateral load resisting systems undergo displacement by which connected gravity systems experience lateral displacement. Therefore, GLRS should have some lateral displacement capacity in order to hold gravity loads under severe earthquakes and winds. Since there are the limited number of researches on PT flat plate slab systems, the behavior of the systems have not been well defined. This study investigated the cyclic behavior of post tensioned flat plate slab systems. For this purpose, an experimental test was carried out using 4 interior PT flat plate slab-column specimens. All specimens have bottom reinforcement in the slab around the slab-column connection. Test variables of this experimental study are vertical load level and tendon distribution patterns.

  • PDF

중층 종합병원 건물의 내진성능평가 (Seismic Performance Evaluation of a Mid-rise General Hospital Building)

  • 김태완;추유림;김승래
    • 한국지진공학회논문집
    • /
    • 제21권5호
    • /
    • pp.245-254
    • /
    • 2017
  • The building which are essential for disaster recovery is classified as a special seismic use group. Especially, achievement of seismic performance is very important for the hospital, so the hospital should be able to maintain its function during and right after an earthquake without significant damage on both structural and non-structural elements. Therefore, this study aimed at checking the seismic performance of a hospital building, but which was limited to structural elements. For the goal, a plan with a configuration of general hospitals in Korea was selected and designed by two different seismic-force-resisting systems. In analytical modeling, the shear behavior of the wall was represented by three inelastic properties as well as elastic. Nonlinear dynamic analyses were conducted to evaluate the performance of structural members. The result showed that the performance of shear walls in the hospital buildings was not satisfied regardless of the seismic-force-resisting systems, while the demands on the beams and columns did not exceed the capacities. This is the result of only considering the shear of the wall as the force-controlled action. When the shear of the wall was modeled as inelastic, the walls were yielded in shear, and as the result, the demands for frames were increased. However, the increase did not exceed the capacities of the frames members. Consequently, since the performance of walls is significant to determine the seismic performance of a hospital building, it will be essential to establish a definite method of modeling shear behavior of walls and judging their performance.

대형 뉴메틱케이슨 강성기초의 접지압분포 (Distribution of Ground Contact Pressure under Rigid Foundation of Large Pneumatic Caisson)

  • 홍원표;여규권
    • 대한토목학회논문집
    • /
    • 제28권2C호
    • /
    • pp.105-115
    • /
    • 2008
  • 다양한 지층에 설치된 대형 뉴메틱케이슨의 강성기초에 작용하는 접지압분포를 파악하기 위하여 영종대교하부기초로 채택된 뉴메틱케이슨 시공시 실시한 현장계측자료를 분석하였다. 뉴메틱케이슨의 침설시 케이슨의 하부 접지면에 케이슨의 침설에 저항하여 저항력이 작용할 것이다. 이 저항력을 뉴메틱케이슨 기초저면 모서리에 설치한 반압계로 측정할 수 있었다. 그리고 이 저항력측정기록을 이용하여 접지압을 산정하였다. 측정기록의 분석결과 기반암구간에서 뉴메틱케이슨기초에 작용하는 접지압분포는 아래로 볼록한 형상의 접지압분포를 보이는 반면에 해성퇴적층과 풍화암층에서의 접지압분포는 위로 볼록한 형상을 보인다. 그리고 이들 접지압분포는 대체적으로 모든 지층에서 대칭분포를 나타내고 있다. 대형 뉴메틱케이슨기초에 작용한 최대접지압에 의하여 제시된 접지압분포는 Kgler(1936)와 Fang(1991)이 강성기초를 대상으로 제시한 접지압분포특성과 잘 일치하는 것으로 나타났다.

경량콘크리트를 사용한 철선일체형 바닥구조의 휨내력 및 전단내력 실험적 평가 (An Experimental Evaluation of Bending and Shear Resisting Strengths for Wire-Integrated Deck Plate System using Lightweight Concrete)

  • 이성희;방중석;원용안;류재용;최성모
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.275-282
    • /
    • 2011
  • 최근 내진설계의 발달과 친환경 건설자재에 대한 관심으로 건물의 자중을 줄이기 위한 경량콘크리트에 대한 관심이 높아지고 있으며, 증축건물을 중심으로 경량콘크리트를 이용한 설계가 점차 증가하는 추세에 있다. 따라서 본 연구는 철선일체형 데크플레이트와 경량콘크리트를 사용한 바닥구조시스템의 휨내력과 전단내력을 평가하기 위해 하부 강판 플레이트의 설치유무를 변수로 4개의 실험체를 제작하여 구조실험을 수행하였다. 이를 통해 경량콘크리트를 이용한 합성바닥구조의 구조성능은 KCI(2007)의 설계기준을 만족하는 것으로 나타났다.

조합하중시의 플랫 플레이트 슬래브 시스템에 대한 수정된 등가골조 모델 (A Modified Equivalent Frame Model for Flat Plate Slabs Under Combined Lateral and Gravity Loads)

  • 오승용;박영미;한상환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.369-372
    • /
    • 2006
  • Flat plate slab systems have been commonly used as a gravity force resisting systems, which should be constructed with lateral force resisting systems such as shear walls and moment resisting frame. ACI 318(2005) allows the Direct design method, the equivalent frame method (ACI-EFM) under gravity loads and the finite-element models, effective beam width models and equivalent frame models under lateral loads. ACI-EFM can be used for gravity loads as well as lateral loads analysis. But the method may not predict the behavior of flat plate slabs under lateral loads. Thus Previous study developed a Modified equivalent frame method(Modified-EFM) which could give more precise answer for flat plate slab under lateral loads. This study is to verified the accuracy of a Modified-EFM under combined lateral and gravity loads. The accuracy of this model is verified by comparing the results using the Modified-EFM with the results of finite element analysis. For this purpose, 7 story building is considered. The analysis results of other existing models are included. The analysis results show that Modified-EFM produces comparable drift and slab internal moments with those obtained from finite element analysis.

  • PDF