• Title/Summary/Keyword: resistant bacteria

Search Result 974, Processing Time 0.032 seconds

Study on Antibiotic Resistant Enterobacteria in Pharmaceutical Effluent (제약회사 폐수처리장 방류수 중 항생제 내성 Enterobacteria에 관한 연구)

  • Kim, Jae-Gun;Kim, Young Jin
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2016
  • Objectives: This study aims to examine the concentration, diversity, and antibiotic characteristics of penicillin G resistant enterobacteria present in pharmaceutical effluent. Methods: Water sampling was performed from a pharmaceutical company in Gyeonggi-do Province, Korea in March 2015. Water samples were plated in triplicate on tryptic soy agar plates with 32 mg/L of penicillin G. Penicillin G resistant enterobacteria were selected from the effluent and were subjected to 16S rRNA analysis for penicillin G resistant species determination. Identified resistant strains were tested for resistance to various antibiotics. Results: Penicillin G resistant enterobacteria were present at 6.2% as to culturable heterotrophic bacteria. Identified penicillin G resistant enterobacteria exhibited resistance to more than 10 of the antibiotics studied. These resistant bacteria are gram negative and are closely related to pathogenic species. Conclusion: Multi-antibiotic resistant bacteria in the effluent suggest a need for disinfection and advanced oxidation processes for pharmaceutical effluents.

Anti-inflammatory and Anti-bacterial Effects of Aloe vera MAP against Multidrug-resistant Bacteria

  • Choi, Sang Hwa;Shin, Hea Soon
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.286-290
    • /
    • 2017
  • Multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa are highly dangerous nosocomial pathogens, cause the symptoms of skin infections, pressure sores, sepsis, blood stream and wound infections. Unfortunately, these pathogens are immune to the most common antibiotics, such as, carbapenem, aminoglycoside and fluoroquinolone. Therefore, it is imperative that new and effective antibiotics be developed. In the present study, the antimicrobial effects of Aloe vera MAP (modified Aloe polysaccharide) on Staphylococcus aureus and Bacillus subtilis, Escherichia coli and Enterobacter aerogenes, and clinical Pseudomonas aeruginosa and clinical Acinetobacter baumannii were comprehensibly investigated. Prior to the growth inhibition effect measurement and antibiotic disc diffusion assay on gram-positive and gram-negative bacteria and selected multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, antimicrobial resistance screening was performed for the multidrug-resistant bacteria obtained from clinical isolates. The results for showed the Aloe vera MAP had a concentration-dependent effect on all of examined bacteria, particularly on Pseudomonas aeruginosa. Anti-inflammatory and anti-oxidant experiments were also performed dose dependently effects to confirm the beneficial physiological effects of Aloe vera MAP.

Distribution of Indicator Organisms and Influence of Storage Temperature and Period in Commercial Plant Food (시판 식물성 식품의 오염지표세균 분포 및 저장온도, 기간별 오염지표세균의 변화)

  • 이용욱;박석기
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • There were few data for the distribution of the indicator organisms in the commercial plant foods, and for the normal flora and for the foodborne agents within the country. First of all it must be investigated the distribution of the indicator organisms. And also it is very important to prepare the sanitation criteria for the plant foods through the microbiological examination and the investigation of tendency to change of the indicator organisms according to the storage temperature and period. The average number of total viable counts for grains was 2.9$\times$105/g, psychrophilic bacteria 2.9$\times$105/g, heterotrophic bacteria 3.1$\times$105/g, heat-resistant bacteria 2.1$\times$103/g, Pseudomonas aeruginosa 23/g. That for beans was 6.3$\times$102/g, psychrophile 34/g, heterotroph 1.7$\times$102/g. That for sesames was 1.4$\times$105/g, coliform 350/g, psychrophile 7.4$\times$104/g, heterotroph 5.8$\times$104/g, Pseud. aeruginosa 2.3$\times$103/g. heat-resistant bacteria 150/g. That for potatoes was 2.0$\times$107/g, coliform 5.0$\times$104/g, psychrophile 1.8$\times$107, heterotroph 1.4$\times$107/g, heat-resistant bacteria 3.3$\times$104/, Staphylococcus 2.7$\times$105/g, fecal streptococcus 4.5$\times$103/g, Pseud. aeruginosa 7.0$\times$103/g. That for mushrooms was 1.2$\times$108/g, psychrophile 9.4$\times$107/g, heterotroph 1.0$\times$109/g, heat-resistant bacteria 1.6$\times$105/g, Pseud. aeruginosa 1.3$\times$103/g. That for vegetables was 5.9$\times$1011/g, coliform 1.8$\times$106g/, Staphylococcus 1.1$\times$1012/g, heterotroph 8.4$\times$1011/g, heat-resistant bacteria 7.6$\times$106/g, Staphylococcus 1.1$\times$107/g, fecal streptococcus 1.1$\times$104/g, Pseud. aerugniosa 5.2$\times$104/g. That for nuts 3.9$\times$104/g, coliform 3.9$\times$103/g, psychrophile 4.0$\times$104/g, heterotroph 3.2$\times$104/g, heat-resistant bacteria 400/g. In commercial grains and beans, SPC, psychrophile, heterotroph and heat-resistant bacteria stored at 1$0^{\circ}C$, 2$0^{\circ}C$, 3$0^{\circ}C$ were constant. Staphylococcus, coliform, Pseud. aeruginosa were decreased a little n grains, but were not detected in beans. In mushrooms, all indicator organisms were increased as time goes on and were increased rapidly at 2$0^{\circ}C$. In sesames, coliform was not detected at all temperature. psychrophile was increased for 7 days, the others were constant. In potatoes, SPC, psychrophile, heat-resistant bacteria, heterotroph had a tendency to increase and the others were constant. In vegetables, indicator organisms were had a tendency to increase, psychrophile, heterotroph were rapidly increased after 7 days. In nuts, SPC, coliform, psychrophile heterotroph, heat-resistant bacteria, Pseud. aeruginosa were constant, staphylococcus and fecal streptococcus were not detected.

  • PDF

Monitoring and Characterization of Bacterial Contamination in a High-Purity Water System Used for Semiconductor Manufacturing

  • Kim, In -Seop;Lee, Geon-Hyoung;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.99-104
    • /
    • 2000
  • Hydrogen peroxide has been used in cleaning the piping of an advanced high-purity water system that supplies ultra-high purity water (UHPW) for 16 megabyte DRAM semiconductor manufacturing. The level of hydrogen peroxide-resistant bacteria in UHPW water was monitored prior to and after disinfecting the piping with hydrogen peroxide. Most of the bacteria isolated after hydrogen peroxide disinfection were highly resistant to hydrogen peroxide. However, the percentage of resistant bacteria decreased with time. The hydrogen peroxide-resistant bacteria were identified as Micrococcus luteus, Bacillus cereus, Alcaligenes latus, Xanthomonas sp. and Flavobacterium indologenes. The susceptibility of the bacteria to hydrogen peroxide was tested as either planktonic cells or attached cells on glass. Attached bacteria as the biofilm on glass exhibited increased hydrogen peroxide resistnace, with the resistance increasing with respect to the age of the biofilm regrowth on piping after hydrogen peroxide treatment. In order to optimize the cleaning strategy for piping of the high-purity water system, the disinfecting effect of hydrogen preoxide and peracetic acid on the bacteria was evaluated. The combined use of hydrogen peroxide and peracetic acid was very effective in killing attached bacteria as well as planktonic bacteria.

  • PDF

Isolation and Characterization of Ultra-Violet and Gamma-radiation Resistant Bacteria from Natural Habitats (자연 생태계로 부터 자외선 및 방사선 내성 박테리아의 분리 및 특성 연구)

  • 이영남;이인정
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.297-303
    • /
    • 1989
  • Attempts to isolate the naturally occurring ultra-violet resistant bacteria from environmental sources were made. The isolates, designated No.29, 100, and 107, among numbers of bacterial isolates revealed a remarkable resistance to UV ray, whose degree of resistance in dose/response kinetics was comparable to that of an endospore-former, Bacillus subtilis. In a range of 100-300 $Jm^{-2}$/min of UV irradiation, the isolates exhibited 500-1000 fold resistance compated with E. coli. The isolated appeared to possiss cell-bound pigment of organge or crimson-red. The isolate 29 is spherical in pairs or tetrads, whereas the isolates 100 and 107 are rod. All are Gram-gositive bacteria and seemed to be non-endospore-bearer. A number of biochemical studies pursued on the isolates suggested that they are quite different to each other. Electron microscopic examination and the physiological characters of the isolate 29 suggested that this UV resistant spherical bacterium might be one species of Deinococcus, probably Deinococus radiophilus. Since there is no documents on UV resistant, Gram-positive, non-sporeformer bacillus so far, the isolates 100 and 107 might be turned out as new kinds of UV resistant bacteria occurring in nature by further investigation.

  • PDF

Antibiotic and Heavy Metal Resistance of Coliform Bacteria Isolated from Mineral Water (약수에서 分離한 大腸菌群의 일부 중금속 및 抗生劑耐性에 관한 연구)

  • Jeong, Jee-Yeon;Zong, Moon-Shik
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.63-73
    • /
    • 1989
  • The purposes of this study were to find out the heavy metal and antibiotic resistant coliform bacteria from mineral water and the resistant factors. For the experiment, mineral water samples were taken from A area and B area during the period from march to July, 1988. The results of the experiment were as follows 1. From mineral water, eleven resistant coliforms and one susceptible coliform were isolated. 2. All resistant isolates harbored diverse plasmids of ranged ca. 14-54kb. 3. Susceptible coliform harbored a only plasmid of ca. 2.8 kb. 4. All resistant isolates harbored common size of plasmid of ca. 14kb. 5. As a result of the transformation and agarose gel electrophoresis experiments, resistant factor was R-plasmid. In conclusion, It is suggested that heavy metal contamination of mineral water is the selective pressure for the plasmid encoding the tolerance. Heavy metal resistance, in some case, is present with antibiotic resistance. Therefore, heavy metal contamination of mineral water induces antibiotic resistant bacteria.

  • PDF

Bacillus subtilis from Soybean Food Shows Antimicrobial Activity for Multidrug-Resistant Acinetobacter baumannii by Affecting the adeS Gene

  • Wang, Tieshan;Su, Jianrong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2043-2050
    • /
    • 2016
  • Exploring novel antibiotics is necessary for multidrug-resistant pathogenic bacteria. Because the probiotics in soybean food have antimicrobial activities, we investigated their effects on multidrug-resistant Acinetobacter baumannii. Nineteen multidrug-resistant A. baumannii strains were clinically isolated as an experimental group and 11 multidrug-sensitive strains as controls. The growth rates of all bacteria were determined by using the analysis for xCELLigence Real-Time Cell. The combination of antibiotics showed synergistic effects on the strains in the control group but no effect on the strains in the experimental group. Efflux pump gene adeS was absent in all the strains from the control group, whereas it exists in all the strains from the experimental group. Furthermore, all the strains lost multidrug resistance when an adeS inhibitor was used. One strain of probiotics isolated from soybean food showed high antimicrobial activity for multidrug-resistant A. baumannii. The isolated strain belongs to Bacillus subtilis according to 16S RNA analysis. Furthermore, E. coli showed multidrug resistance when it was transformed with the adeS gene from A. baumannii whereas the resistant bacteria could be inhibited completely by isolated Bacillus subtilis. Thus, probiotics from soybean food provide potential antibiotics against multidrug-resistant pathogenic bacteria.

Comparative risks of resistant microorganisms in the intestinal track of imported freshwater ornamental fish and cultured marine fish (수입산 담수관상어 및 양식 해산어의 장내세균에서 나타나는 내성균 위험성 비교)

  • Yoon, So-Hye;Jun, Lyu-Jin;Kim, Young-Jin;Jin, Ji-Woong;Jeong, Hyun-Do
    • Journal of fish pathology
    • /
    • v.25 no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Various antibiotics, that could induce the appearance of resistant microorganisms, have been used for treatment or prevention of bacterial diseases in marine and ornamental fish. We determined and characterized the level of antibiotic-resistant bacteria and proportion of multi-drug resistant bacteria in intestinal microflora of both marine fish cultured in Korea and imported ornamental freshwater fish. For this the bacterial species and resistance to antibiotics were investigated in intestine of rock bream Oplegnathus fasciatus cultured in Korea and pearl gourami Trichogaster leeri imported from Singapore to characterise. Although the bacterial species were different, proportions of resistant bacteria to single antibiotics or multi-drug were higher in intestinal microflora of pearl gourami Trichogaster leeri imported from Singapore than in rock bream Oplegnathus fasciatus cultured in Korea. These results indicate that various antibiotics have been being used before trading without measures in the market of asian ornamental fishes, providing high risks for the emergence of multi-drug resistant bacteria.

Investigation of Possible Gene Transfer to Soil Microorganisms for Environmental Risk Assessment of Genetically Modified Organisms

  • Kim, Young-Tae;Park, Byoung-Keun;Hwang, Eui-Il;Yim, Nam-Hui;Kim, Na-Rae;Kang, Tae-Hoon;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.498-502
    • /
    • 2004
  • The current study was conducted to monitor the possibility of the gene transfer among soil bacteria, including the effect of drift due to rain and surface water, in relation to the release of genetically modified organisms into the environment. Four types of bacteria, each with a distinct antibiotic marker, kanamycin-resistant P. fluorescens, rifampicin-resistant P. putida, chloramphenicol-resistant B. subtilis, and spectinomycin-resistant B. subtilis, were plated using a small-scale soil-core device designed to track drifting microorganisms. After three weeks of culture in the device, no Pseudomonas colonies resistant to both kanamycin and rifampicin were found. Likewise, no Bacillus colonies resistant to both chloramphenicol and spectinomycin were found. The gene transfer from glyphosate-tolerant soybeans to soil bacteria, including Rhizobium spp. as a symbiotic bacteria, was examined by hybridization using the DNA extracted from soil taken from pots, in which glyphosate-tolerant soybeans had been growing for 6 months. The results showed that 35S, T-nos, and EPSPS were observed in the positive control, but not in the DNA extracted from the soilborne microorganisms. In addition, no transgenes, such as the 35S promoter, T-nos, and EPSPS introduced into the GMO soybeans were detected in soilborne bacteria, Rhizobium leguminosarum, thereby strongly rejecting the possibility of gene transfer from the GMO soybeans to the bacterium.

Synergistic Antibacterial Activity of an Active Compound Derived from Sedum takesimense against Methicillin-Resistant Staphylococcus aureus and Its Clinical Isolates

  • Jeong, Eun-Tak;Park, Seul-Ki;Jo, Du-Min;Khan, Fazlurrahman;Choi, Tae Ho;Yoon, Tae-Mi;Kim, Young-Mog
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1288-1294
    • /
    • 2021
  • There are a growing number of reports of hospital-acquired infections caused by pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). Many plant products are now being used as a natural means of exploring antimicrobial agents against different types of human pathogenic bacteria. In this research, we sought to isolate and identify an active molecule from Sedum takesimense that has possible antibacterial activity against various clinical isolates of MRSA. NMR analysis revealed that the structure of the HPLC-purified compound was 1,2,4,6-tetra-O-galloyl-glucose. The minimum inhibitory concentration (MIC) of different extract fractions against numerous pathogenic bacteria was determined, and the actively purified compound has potent antibacterial activity against multidrug-resistant pathogenic bacteria, i.e., MRSA and its clinical isolates. In addition, the combination of the active compound and β-lactam antibiotics (e.g., oxacillin) demonstrated synergistic action against MRSA, with a fractional inhibitory concentration (FIC) index of 0.281. The current research revealed an alternative approach to combating pathogenesis caused by multi-drug resistant bacteria using plant materials. Furthermore, using a combination approach in which the active plant-derived compound is combined with antibiotics has proved to be a successful way of destroying pathogens synergistically.