• Title/Summary/Keyword: resistance spot welding

Search Result 276, Processing Time 0.023 seconds

A Study on Prediction of Nugget Diameter by Resistance Spot Welding Finite Element Analysis of High Tensile Steel (SGAFC 780) (고장력 강판(SGAFC780)의 저항 점 용접의 유한요소해석을 통한 너깃 직경 예측)

  • Lee, Cheal-Ho;Kim, Won Seop;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.144-150
    • /
    • 2019
  • In this study, resistance spot welding was performed using a high tensile steel plate SGAFC 780. The shear tensile strength, fracture profile, nugget diameter, and simulation were compared according to the conditions. After the nugget diameter calibration, the minimum diameter of welding was more than 4.3mm when the welding current was 8kVA or more. At 9kVA and above 10kVA, the minimum nugget diameter of 4.3mm was satisfied. On the other hand, due to the high current and time, the fly phenomenon occurred and the deep indentation remained. An evaluation of the weldability confirmed that there was an interval that was evaluated as weld failure due to the creep phenomenon, which satisfied the tensile shear strength and minimum nugget diameter. On the other hand, areas that have sufficient load bearing capacity even when drift has occurred were also identified. The simulation results show that the error rate was less than 4.2% when comparing the nugget diameter in the simulation and the experimental results in the appropriate weld zone, and confirmed the reliability of the simulation.

Intelligent quality estimation system using primary circuit variables of RSW (저항점용접 1차 공정변수를 이용한 지능형 용접품질 판단 시스템)

  • 조용준;이세헌;신현일;배경민;권태용
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.142-145
    • /
    • 1999
  • The dynamic resistance monitoring is one of the important issues in that in-process and real time quality assurance of resistance spot weld is needed to increase the product reliability. Secondary dynamic resistance patterns, as a real manner, are hard to adapt those factors in real time and in-plant system. In the present study, a new dynamic resistance detecting method is presented as a practical manner of weld quality assurance at the primary circuit. By the correlation analysis, it is found that the primary dynamic resistance patterns are basically similar to those of the secondary. Various dynamic resistance indices are characterized with the primary curve. And quality of the weld, like the tensile shear strength, is estimated using adaptive neuro-fuzzy estimation system which is consisted of the Sugeno fuzzy algorithm. Through the fuzzy clustering and parameter optimization, real time weld quality assurance system with less efforts is proposed.

  • PDF

A Study on Hot Spot stress in welded joints of steel Tubular truss (강관 트러스 연결부 Hot Spot 응력에 관한 연구)

  • Jang, Woo-Sun;Chung, Jee-Seung;Ahn, Young-Soo;Yoon, Sik-Jae;Yang, Seong-Don;Park, Gyeong-Jun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1430-1436
    • /
    • 2010
  • Tubular member is hollow and is an excellent source of structural member with great buckling resistance and tortional resistance. With its development and simplicity in structure, steel tubular truss has the ability to be structured in long span bridges, without a stiffener. Recently, it has been used in many countries in Europe, Canada, Japan, and the US with the help of international committees such as CIDECT(International Committee for the Development and Study of Tubular Structures and International Institute of Welding). The most important problem when using the tubular member is the fact that it is difficult to test the fatigue stress determined by nominal stress, since geometrical stress concentration occurs due to the welded joint's nod of complexity. The purpose of this study is to compare and examine current theories and widely applied Hot Spot stress determinations through finite element analysis, which is about welded joints of steel tubular truss. We would like to suggest a way of design practice which involves a bridge plan with rarely domestically used steel tubular truss` basic research data as well as considering the future of tubular member.

  • PDF

Laser Stitch Welding Technology for the Fabrication of Automotive Parts (자동차 부품 제조를 위한 레이저 스티치 용접 기술)

  • Joo, Sung-Min;Bang, Hee-Seon;Han, Jun-Ui;Kim, Kyoung-Hak;Ahn, Byoung-Ho
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • Nowadays, the weight lightening of automotive is required as conserving the environment has become a major worldwide issue. To solve this issue, various researches for the use of light materials(Alalloy, Mgalloy)and ultra high strength steel as substitutes of the current structural material have been carried out. Application of laser stitch welding to the assembly of automotive produces improvement in strength, lightening of body, higher fuel efficiency, lower production cost as well as reduction in assemble line due to its fast welding speed, superior accessible and weld quality. This process overcomes the shortcomings of the current resistance spot welding such as high electricity consumption, electrode replacement, and economical, technical limitation in design and production method of automotives.

Characteristics on Sandwich Panel Welding of a Ni Thin Plate and Porous Ni Thin Plate (니켈박판과 다공질니켈박판의 샌드위치 판넬 용접 특성)

  • Hwang, Chan-Youn;Yang, Yun-Seok;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.547-555
    • /
    • 2012
  • This paper focuses on the research of the anode and cathode in the Ni-MH secondary battery. In this paper, the proposed method employs a continuous wave Nd : YAG laser based on the pure Ni instead of the low carbon steel to improve the conductivity although the conventional secondary battery is based on the resistance spot welded with low carbon steel SS41. It welds a sandwich panel using the pure Ni and the porous thin plate, and the tested optimal conditions for the laser power and irradiation speed were 300 and 350 Watt, and 1.0~1.6m/min, respectively. Finally, we observed a ratio, heat input and cross-section and measured the conductivity of the welding section to test the weldability.

Laser Weldability of Sheet Steels for Tailored Blank Manufacturing (II) -Effect of Joint Configuration- (테일러드 블랭크용 박판 강재의 레이저 용접성 (II) -이음 형상이 용접성에 미치는 영향-)

  • 김기철;이기호;이목영
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.100-110
    • /
    • 1998
  • In this paper, the laser weldability of thin gage steels for automobile application is discussed. Welding was carried out with a high power carbon dioxide laser system, and the laser energy was concentrated through a plano-convex lens. Test results showed that the joint gap in the butt welding proved to be one of the critical conditions for an acceptable weld. In the case where the ratio of the gap clearance to the material thickness was slightly bigger than optimal value, the weld strength was reduced showing weld metal fracture. It was possible to obtained a weld penetration ratio of 0.91 when the vertical offset ratio was controlled to be 0.4 or smaller. Results also demonstrated that the weld strength of the lap joint was influenced by travel speed. At the travel speeds lower than 37 mm/s, the weld strength indicated higher value than that of class A recommendation strength of a resistance spot weld based on the KS code. It was clear that the complicated effect of specimen alignment should be considered so as to make a sound weld with high integrity when the laser process was applied to the long weld line.

  • PDF

Effect of Si contents on Tensile-Shear Peak Load and Nugget Diameter in the Resistance Spot Welded of Dual Phase Steel for Automotive Body Applications (자동차 차체용 냉연 DP강 저항점용접부의 너깃경과 인장전단강도에 미치는 Si 함유량의 영향)

  • Kong, Jong-Pan;Park, Tae-Jun;Han, Tae-Kyo;Chin, Kwang-Geun;Kang, Chung-Yun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.45-45
    • /
    • 2009
  • 원가 측면에서 유리한 저항점용접(Resistance Spot Welding)이 차체 용접에 80%이상으로 가장 많이 적용되고 있다. 첨단고강도강(Advanced High Strength Steel)의 저항점용접성 및 용접부 특성에 미치는 공정 변수의 영향에 대한 연구결과는 많으나, 합금원소의 영향에 대해서는 전무하다. 특히, Si는 DP(Dual Phase)강에 첨가 시 균일한 마르텐사이트의 분포를 촉진하는 원소로 저항 점용접성 및 용접부 특성에 영향을 미칠 것으로 예상되며, 이에 대한 연구는 보고된바 없다. 본 연구에서는 냉연 DP강의 저항 점용접시 중요한 인자 중 하나인 너깃경과 전단인장강도에 미치는 Si함유량의 영향을 검토하였다. 사용된 강재 및 용접기는 1.2mm 두께의 Si함유량(0, 0.5, 1.0, 1.5wt%)이 다른 인장강도 780~1000MPa급 냉연 DP강과 단상 AC용접기를 사용하였다. 용접조건은 ISO 18278-2규격에 따라 가압력 4kA, 초기가압시간 40cycle, 유지시간 17cycle로 고정하고, 용접전류만 변화하여 용접을 실시하였다. 너깃경은 용접부 단면을 컷팅 후 폴리싱 하여, 광학현미경과 Image Pro plus를 이용하여 측정했으며, 인장시편규격은 JIS Z 3137를 이용하였다. Si함유량이 증가에 따라 스패터 발생 전류는 감소했고, 너깃경은 직선적으로 증가했다. Si함유량 증가에 따른 너깃경 증가 이유는 저항(R) 측정결과, Si함유량 증가에 따라 모재의 저항이 높아져, 따라서 입열량($Q=I^2Rt$)이 많아지기 때문으로 판단되었다. 인정전단강도는 Si함유량 증가에 따라 직선적으로 증가했다. 이러한 이유는 Si함유량 증가에 따라 너깃경이 증가되기 때문으로 판단되었고, 너깃경과 인장전단강도 사이에 직선적 관계(PL(kN)=$3.2N_{dia.}$-0.81, $R^2$=0.93)를 가지고 있었다. 파단양상은 Si함유량에 상관없이 5.4kA이하에서는 계면파단이 일어났고, 6.0kA이상에서는 풀 아웃 파단이 일어났다. 계면파단주원인은 용접부 가장자리에 지름이 약 $5{\mu}m$이하의 예리한 노치가 존재하여 노치응력집중과 HAZ계면 근처에 미접합부가 존재하기 때문으로 판단되었다. 6.0kA이상에서는 예리한 노치가 없었고, HAZ부가 완전히 접합되어 있기 때문에 풀 아웃 파단이 일어난 것으로 판단되었다. 따라서, Si함유량 증가에 따라 적정용접전류 구간은 감소했고, 너깃경은 직선적으로 증가했다. 또한, Si함유량 증가에 따라 인장전간강도는 증가 했으며, 너깃경과 인장전단강도 사이에 직선적 관계를 가지고 있었다. 파단 양상은 Si함유량에 상관없이 5.2kA이하에서는 계면파단이, 6.0kA이상에서는 풀 아웃 파단이 일어났다.

  • PDF

Excellent Seam Weldable Nano-Composite Coated Zn-Ni Plating Steels for Automotive Fuel Tank

  • Jo, Du-Hwan;Yun, Sang-Man;Park, Kee-Cheol;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2019
  • Steels for automotive fuel tank require unique properties such as corrosion resistance for fuel, welding for joining, forming for press, and painting for exterior. Recently, automakers have been requiring excellent seam weldable steels to enhance manufacturing productivity of fuel tank. Thus, POSCO developed a new type of functional steels coated with nano-composite thin layer on Zn-Ni plating steels. The nano-composite coating solution was prepared by mechanical fine dispersion of solutions consisting of polymeric resin and nano-composite materials in aqueous media. The composite solution was coated on the plating steel surface by using roll coater and cured through induction furnace. These new developed plating steels were evaluated for quality performances such as seam and spot weldability, press formability, and corrosion resistance. These new functional steels coated with nano-composite layer exhibited excellent seam weldability and press formability. Detailed discussion of coating solution and experimental results suggest that nano-sized composite dispersion as coating layer plays a key role in enhancing the quality performance.

Consideration of Sensors for Real-Time Quality Evaluation of Resisitance Spot Welds in Automotive Industry (자동차 저항 점 용접부 실시간 품질 검사 자동화를 위한 센서 검토)

  • Cho, Jung-Ho;Cho, Yong-Joon;Yoo, Sung-Pil;Chang, In-Sung;Do, Sung-Sup
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.50-50
    • /
    • 2010
  • 최근 토요타 자동차의 대량 리콜 사태로 안전과 관련된 자동차 품질에 대한 관심과 중요성이 크게 부각되었다. 본 연구에서는 나날이 높아지고 있는 자동차 품질 기준과 생산 비용 절감, 공정 자동화 요구에 부응하기 위한 차체 저항 점 용접부 품질 검사 자동화 기술 개발을 위해 적용 가능한 센서들을 비교, 검토하였다. 알려진 비파괴 검사 방법은 초음파, 와전류, 방사선 검사법 등 다양한 방법들이 존재하지만, 이 연구에서는 생산 라인 현장 적용이 가능한 소형 센서들을 중심으로 검토 영역을 제한하였다. 검토된 비파괴 검사 방법은 총 5가지 종류로 종래의 수동 초음파 검사법, 집적된 탐촉자를 이용한 3차원 초음파 검사법, NAUT(Non-contact Air-coupled Ultrasonic Test), EMAT(EletroMagnetic Acoustic Test), 그리고 너겟 프로파일러$^{TM}$이다. 이 연구에서는 각 검사법의 원리와 장단점을 설명하고 생산 라인 적용에 필요한 필수 항목들에 대해 고찰하였다.

  • PDF

Optimization of Resistance Spot Weld Condition for Single Lap Joint of Hot Stamped 22MnB5 by Taking Heating Temperature and Heating Time into Consideration (핫스템핑 공정에서 가열온도 및 유지시간을 고려한 22MnB5의 단일겹치기 저항 점용접 조건 최적화)

  • Choi, Hong-Seok;Kim, Byung-Min;Park, Geun-Hwan;Lim, Woo-Seung;Lee, Sun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1367-1375
    • /
    • 2010
  • In this study, optimization of the process parameters of the resistance spot welding of a sheet of aluminum-coated boron alloyed steel, 22MnB5, used in hot stamping has been performed by a Taguchi method to increase the strength of the weld joint. The process parameters selected were current, electrode force, and weld time. The heating temperature and heating time of 22MnB5 are considered to be noise factors. It was known that the variation in the thickness of the intermetallic compound layer between the aluminum-coated layer and the substrate, which influences on the formation of nugget, was generated due to the difference of diffusion reaction according to heating conditions. From the results of spot weld experiment, the optimum weld condition was determined to be when the current, electrode force, and weld time were 8kA, 4kN, and 18 cycles, respectively. The result of a test performed to verify the optimized weld condition showed that the tensile strength of the weld joint was over 32kN, which is considerably higher than the required strength, i.e., 23kN.