• Title/Summary/Keyword: resistance inhibition

Search Result 546, Processing Time 0.02 seconds

Saussurea Lappa Radix-induced cytotoxicity via ROS generation in A549 lung cancer cells (A549세포에 대한 목향추출물의 ROS 매개 세포독성)

  • Lee, Young-Joon;Ku, Sae-Kwang;Kang, Su-Jin
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.169-178
    • /
    • 2013
  • Objectives : Many cancers acquired resistance to chemotherapy, thus limiting its anticancer efficacy. It is known that Glutathione (GSH) is related to the development of drug resistance. The expression of GSH synthesizing glutamylcysteine ligase (GCL) was controlled by nuclear factor-E2-related factor(Nrf2). Previous studies showed that pharmacological depletion of GSH results in ROS increase, apoptotic response, and sensitization to oxidizing stimuli. In the current study, we examined Saussurea Lappa (SL) have the inhibitory effect on Nrf2 activity using human lung cancer A549 cells overexpressing Nrf2. Methods : Cell viability of A549 cells on SL treatment was determined by MTT assay. To detect the apeptosis in SL-treated A549 cells, sub-G1 population was measured by flow cytometry analysis (FACS). The level ROS was determined by FACS and fluorescence microscopy. To investigate whether SL have effect the suppression on Nrf2, we performed western blotting analysis. The GSH content was measured since GSH plays an important role in response to oxidative stress and was regulated by Nrf2. Results : A549 cells treated with an SL extract showed a substantial decrease in cell viability, along with a concomitant increase in apoptosis compared to untreated cells. Treatment of the SL extract led to increased Reactive oxygen species (ROS) production and a suppression of Nrf2. In addition, the antioxidant NAC attenuated SL-induced ROS generation, Nrf2 inhibition, and apoptosis. Taken together, these data show that the SL extract induced the production of ROS, and the inhibition of Nrf2, consequently resulting in A549 cell death. Conclusions : These results suggest that SL might be an effective agent to enhance anticancer drug sensitivity via Nrf2 inhibition.

The Probiotic Characteristics of Lactobacillus acidophilus Isolated from Infant Feces (신생아분변 유래 Lactobacillus acidophilus의 프로바이오틱으로서의 특성)

  • Kim, Eun-Ah;Yi, Dong-Heui
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.93-101
    • /
    • 2008
  • This study was conducted to obtain a good probiotic strain of L. acidophilus from infant feces which have the acid and bile tolerance. The selection criteria for the strain included antimicrobial activity, serum cholesterol reduction, resistance to the hydrogen peroxide, angiotensin converting enzyme (ACE) inhibition activity and iron solubility. To this end, five probiotic Lactobacillus strains have been isolated from infant feces. Especially, L. acidophilus SD 105 had strong antimicrobial activity against Listeria sp., high deconjugation activity in the medium which contained 0.5% of glycocholate (GCA) and high resistance to the hydrogen peroxide. L. acidophilus SD 102 showed the highest ACE inhibition activity among the tested cultures and L. acidophilus SD 103 showed iron solubility of more than 70%.

A Study on Drag Reduction Agency for Gas Pipeline

  • Zhang Qibin;Fan Yunpeng;Lin Zhu;Zhang Li;Xu Cuizhu;Han Wenli
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.283-287
    • /
    • 2008
  • The drag reduction agency (DRA) for gas pipeline, a novel method used for reducing friction or drag on a gas flowing to increase the transmission efficiency of gas pipeline, is a more flexible and economical technology than internal flow efficient coatings. In this paper, an effective DRA has been developed in Authors' Institute by analyzing the hydrodynamic friction resistance on internal gas pipeline and then studying the work mechanism and molecular structure of DRA. In the meantime, a group of property test for selecting DRA material has been determined, including viscosity, contact angle, volatility, corrosion, slab extending, and flow behavior in horizontal tube. The inhibition efficiency and drag reduction efficiency of the developed DRA have been investigated finally based on the relevant test methods. Results of corrosion test show that the developed DRA has very good inhibition effect on mild steel by brushing a thin layer of DRA on steel specimens, giving inhibition efficiency of 91.2% and 73.1% in 3%NaCl solution and standard salt fog environment respectively. Results of drag-reducing test also show that the Colebrook formula could be used to calculate friction factors on internal pipes with DRA as the Reynolds number is in the range of $0.75\times10^5\sim2.0\times10^5$. By comparing with normal industrial pipes, the friction resistance coefficient of the steel pipe with DRA on internal wall decreases by 13% and the gas flux increases by 7.3% in testing condition with Reynolds number of $2.0\times10^5$.

Src Family Kinase Inhibitor PP2 Induces LC3 Conversion in a Manner That is Uncoupled from Autophagy and Increases Apoptosis in Multidrug-Resistant Cells

  • Kim, Yun-Ki;Ahn, Jun-Ho;Lee, Mi-Chael
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.393-398
    • /
    • 2012
  • Recently, we reported that defective autophagy may contribute to the inhibition of the growth in response to PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), a selective SFK inhibitor, in multidrug-resistant v-Ha-ras-transformed NIH 3T3 cells (Ras-NIH 3T3/Mdr). In this study, we demonstrated that PP2 induces LC3 conversion via a mechanism that is uncoupled from autophagy and increases apoptosis in Ras-NIH 3T3/Mdr cells. PP2 preferentially induced autophagy in Ras-NIH 3T3 cells rather than in Ras-NIH 3T3/Mdr cells as determined by LC3-I to LC3-II conversion and GFP-LC3 fluorescence microscopy. Beclin 1 knockdown experiments showed that, regardless of drug resistance, PP2 induces autophagy via a Beclin 1-dependent mechanism. PP2 induced a conformational change in Beclin 1, resulting in the enhancement of the pro-autophagic activity of Beclin 1, in Ras-NIH 3T3 cells. Further, PI3K inhibition induced by wortmannin caused a significant increase in apoptosis in Ras-NIH 3T3 cells, as demonstrated by flow cytometric analysis of Annexin V staining, implying that autophagy inhibition through PI3K increases apoptosis in response to PP2 in Ras-NIH 3T3 cells. However, despite the fact that wortmannin abrogates PP2-induced GFP-LC3 punctae formation, some LC3 conversion remains in Ras-NIH 3T3/Mdr cells, suggesting that LC3 conversion may occur in an autophagy-independent manner. Taken together, these results suggest that PP2 induces LC3 conversion independent of PI3K, concomitant with the uncoupling of LC3 conversion from autophagy, in multidrug-resistant cells.

Downregulation of FoxM1 sensitizes nasopharyngeal carcinoma cells to cisplatin via inhibition of MRN-ATM-mediated DNA repair

  • Li, Dandan;Ye, Lin;Lei, Yue;Wan, Jie;Chen, Hongyan
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.208-213
    • /
    • 2019
  • Chemoresistance is the primary obstacle in the treatment of locally advanced and metastatic nasopharyngeal carcinoma (NPC). Recent evidence suggests that the transcription factor forkhead box M1 (FoxM1) is involved in chemoresistance. Our group previously confirmed that FoxM1 is overexpressed in NPC. In this study, we investigated the role of FoxM1 in cisplatin resistance of the cell lines 5-8F and HONE-1 and explored its possible mechanism. Our results showed that FoxM1 and NBS1 were both overexpressed in NPC tissues based on data from the GSE cohort (GSE12452). Then, we measured FoxM1 levels in NPC cells and found FoxM1 was overexpressed in NPC cell lines and could be stimulated by cisplatin. MTT and clonogenic assays, flow cytometry, ${\gamma}H2AX$ immunofluorescence, qRT-PCR, and western blotting revealed that downregulation of FoxM1 sensitized NPC cells to cisplatin and reduced the repair of cisplatin-induced DNA double-strand breaks via inhibition of the MRN (MRE11-RAD50-NBS1)-ATM axis, which might be related to the ability of FoxM1 to regulate NBS1. Subsequently, we demonstrated that enhanced sensitivity of FoxM1 knockdown cells could be reduced by overexpression of NBS1. Taken together, our data demonstrate that downregulation of FoxM1 could improve the sensitivity of NPC cells to cisplatin through inhibition of MRN-ATM-mediated DNA repair, which could be related to FoxM1-dependent regulation of NBS1.

Inhibition of Apoptosis is Responsible for the Acquired Resistance of K562 Cells to Cisplatin

  • Lee, Soo-Yong;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 2004
  • In all attempt to elucidate the role of apoptosis in drug resistance, cisplatin-resistant human chronic myelogenous leukemia (CML) K562 cells (K562/CDDP) were established and compared with drug sensitive parent cells (K562) in the induction of apoptosis. K562/CDDP cells were 5-fold more resistant to cisplatin compared to K562 cells. In addition, K562/CDDP cells were significantly more resistant to apoptois as judged by DNA fragmentation and DAPI staining. K562/CDDP cells exhibited decreased proleolytic activity of caspase-3 and this was further demonstrated by decreased cleavage of its substrate poly (ADP-ribose) polymerase (PARR- Western blot analysis showed that K562/CDDP cells had longer sustained levels of BCL-$X_L$ whereas no difference was noted in the level of Bcl-2. the translocation of Bax to mitochondria was significantly delayed in K562/CDDP cells. These results suggest that the reduced translocation of Bax and the sustained expression of BCL-$X_L$ may cause resistance to apoptosis through prevention of mitochondria release of cytochrome c, which subsequently induces reduction of caspase-3 activity and that this response is partly responsible for the acquired resistance to cisplatin ill K562 cells.

Improvement of Leptin Resistance (렙틴 저항성의 개선)

  • Kim, Yong Woon
    • Journal of Yeungnam Medical Science
    • /
    • v.30 no.1
    • /
    • pp.4-9
    • /
    • 2013
  • Leptin, a 16-kDa cytokine, is secreted by adipose tissue in response to the surplus of fat store. Thereby, the brain is informed about the body's energy status. In the hypothalamus, leptin triggers specific neuronal subpopulations (e.g., POMC and NPY neurons) and activates several intracellular signaling events, including the JAK/STAT, MAPK, PI3K, and mTOR pathway, which eventually translates into decreased food intake and increased energy expenditure. Leptin signal is inhibited by a feedback inhibitory pathway mediated by SOCS3. PTP1B involves another inhibitory pathway of leptin. Leptin potently promotes fat mass loss and body weight reduction in lean subjects. However, it is not widely used in the clinical field because of leptin resistance, which is a common feature of obesity characterized by hyperleptinemia and the failure of exogenous leptin administration to provide therapeutic benefit in rodents and humans. The potential mechanisms of leptin resistance include the following: 1) increases in circulating leptin-binding proteins, 2) reduced transport of leptin across the blood-brain barrier, 3) decreased leptin receptor-B (LRB), and/or 4) the provocation of processes that diminish cellular leptin signaling (inflammation, endoplasmic reticulum stress, feedback inhibition, etc.). Thus, interference of the cellular mechanisms that attenuate leptin signaling improves leptin action in cells and animal models, suggesting the potential utility of these processes as points of therapeutic intervention. Various experimental trials and compounds that improve leptin resistance are introduced in this paper.

Saponins from Rubus parvifolius L. Induce Apoptosis in Human Chronic Myeloid Leukemia Cells through AMPK Activation and STAT3 Inhibition

  • Ge, Yu-Qing;Xu, Xiao-Feng;Yang, Bo;Chen, Zhe;Cheng, Ru-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5455-5461
    • /
    • 2014
  • Background: Saponins are a major active component for the traditional Chinese medicine, Rubus parvifolius L., which has shown clear antitumor activities. However, the specific effects and mechanisms of saponins of Rubus parvifolius L. (SRP) remain unclear with regard to human chronic myeloid leukemia cells. The aim of this study was to investigate inhibition of proliferation and apoptosis induction effects of SRP in K562 cells and further elucidate its regulatory mechanisms. Materials and Methods: K562 cells were treated with different concentrations of SRP and MTT assays were performed to determine cell viability. Apoptosis induction by SRP was determined with FACS and DAPI staining analysis. Western blotting was used to detect expression of apoptosis and survival related genes. Specific inhibitors were added to confirm roles of STAT3 and AMPK pathways in SRP induction of apoptosis. Results: Our results indicated that SRP exhibited obvious inhibitory effects on the growth of K562 cells, and significantly induced apoptosis. Cleavage of pro-apoptotic proteins was dramatically increased after SRP exposure. SRP treatment also increased the activities of AMPK and JNK pathways, and inhibited the phosphorylation expression level of STAT3 in K562 cells. Inhibition of the AMPK pathway blocked the activation of JNK by SRP, indicating that SRP regulated the expression of JNK dependent oon the AMPK pathway. Furthermore, inhibition of the latter significantly conferred resistance to SRP pro-apoptotic activity, suggesting involvement of the AMPK pathway in induction of apoptosis. Pretreatment with a STAT3 inhibitor also augmented SRP induced growth inhibition and cell apoptosis, further confirming roles of the STAT3 pathway after SRP treatment. Conclusions: Our results demonstrated that SRP induce cell apoptosis through AMPK activation and STAT3 inhibition in K562 cells. This suggests the possibility of further developing SRP as an alternative treatment option, or perhaps using it as adjuvant chemotherapeutic agent for chronic myeloid leukemia therapy.

NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes

  • Park, Ye-Lim;Choi, Tae-Rim;Kim, Hyun Joong;Song, Hun-Suk;Lee, Hye Soo;Park, Sol Lee;Lee, Sun Mi;Kim, Sang Hyun;Park, Serom;Bhatia, Shashi Kant;Gurav, Ranjit;Sung, Changmin;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.250-258
    • /
    • 2021
  • Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.

Luteolin Sensitizes Two Oxaliplatin-Resistant Colorectal Cancer Cell Lines to Chemotherapeutic Drugs Via Inhibition of the Nrf2 Pathway

  • Chian, Song;Li, Yin-Yan;Wang, Xiu-Jun;Tang, Xiu-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2911-2916
    • /
    • 2014
  • Oxaliplatin is a first-line therapy for colorectal cancer, but cancer cell resistance to the drug compromises its efficacy. To explore mechanisms of drug resistance, we treated colorectal cancer cells (HCT116 and SW620) long-term with oxaliplatin and established stable oxaliplatin-resistant lines (HCT116-OX and SW620-OX). Compared with parental cell lines, $IC_{50}$s for various chemotherapeutic agents (oxaliplatin, cisplatin and doxorubicin) were increased in oxaliplatin-resistant cell lines and this was accompanied by activation of nuclear factor erythroid-2 p45-related factor 2 (Nrf2) and NADPH quinone oxidoreductase 1 (NQO1). Furthermore, luteolin inhibited the Nrf2 pathway in oxaliplatin-resistant cell lines in a dose-dependent manner. Luteolin also inhibited Nrf2 target gene [NQO1, heme oxygenase-1 (HO-1) and $GST{\alpha}1/2$] expression and decreased reduced glutathione in wild type mouse small intestinal cells. There was no apparent effect in Nrf2-/- mice. Luteolin combined with other chemotherapeutics had greater anti-cancer activity in resistant cell lines (combined index values below 1), indicating a synergistic effect. Therefore, adaptive activation of Nrf2 may contribute to the development of acquired drug-resistance and luteolin could restore sensitivity of oxaliplatin-resistant cell lines to chemotherapeutic drugs. Inhibition of the Nrf2 pathway may be the mechanism for this restored therapeutic response.