• Title/Summary/Keyword: resistance to freezing and thawing

Search Result 240, Processing Time 0.027 seconds

A Study on the Reduction of Combined Deterioration by Mixing Latex in Base Concrete (바탕콘크리트의 라텍스 혼입에 따른 복합열화 저감에 관한 연구)

  • Kim, Dae-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.101-102
    • /
    • 2023
  • This study aims to mix the base concrete by mixing latex to improve the durability performance to reduce the composite deterioration of the base concrete. Latex fiber has high resistance to freezing and thawing, adhesion, and deicing agent (calcium chloride), and it is used to secure long-term durability to reduce cracking and compound deterioration of concrete. In addition, through experiments, we are trying to find ways to improve the strength of concrete by studying the mixing of the appropriate mixing ratio of latex.

  • PDF

Strength and Durability Properties of Polymer Concrete Utilizing Oyster Shell Powder as a Filler (굴 패각 분말을 충전재로 활용한 폴리머 콘크리트의 강도 및 내구 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.125-134
    • /
    • 2010
  • This study was performed to evaluate the workability, strengths and durability of polymer concrete using oyster shell that are reclaimed at public shore illegally or leaved on the surroundings of shore to prevent the environmental pollution. We investigated the effect of oyster shell powder (OSP) and $CaCO_3$. on the slump, compressive strength, flexural strength, acid sulfuric and freezing and thawing resistance as a filler of polymer concrete. Modified OSP obtained by crushing oyster shell (less than 0.15 mm size) consists of 60.47 wt% of $SiO_2$ and 39.5 wt% of $CaCO_3$. As a result of slump test by OSP and $CaCO_3$. contents, it is found that slump of specimen used OSP is lower than that used $CaCO_3$. and the more OSP contents are, its slump is increased. Compressive and flexural strength of polymer concrete using OSP are similar or slightly lower than that using $CaCO_3$. In acid sulfuric test for 5 % $H_2SO_4$ and freezing thawing test, regardless of kinds of fillers and contents are not found fatal defects in weight change, falling-off in surface and durability factor.

Effect of Air Void Organization to Frost-Resistance in High-Strength Concrete (고강도 콘크리트의 동해저항에 관한 기포조직의 영향)

  • 김생빈;홍찬홈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.5-10
    • /
    • 1991
  • This study was performed to find out the effect about the spacing factor and durability factor to evaluate the durability of concrete in high-strength concrete with freezing and thawing as following each condition, 1) unit cement content : 500kg/$\textrm{m}^3$, 550kg/$\textrm{m}^3$ 2) water/cement ratio : 25%, 30%, 35% 3) air content : below 1.5%, 1.6~3.5%, 4~6%, over 7% From the results tested, a variation of air content was more effective to the durability of concrete than that of water/cement ratio and unit cement content.

  • PDF

Durability of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 초속경 폴리머 시멘트 모르타르의 내구성)

  • 이윤수;주명기;연규석;정인수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.660-667
    • /
    • 2002
  • The effects of polymer-cement ratio and antifoamer content on the durability of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, regardless of the antifoamer content, the setting time of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to delay with increasing polymer-cement ratio. The water absorption and chloride ion penetration depth of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

An Experimental Study on Analysis of Concrete Properties According to the Dosage Variation of AE Superplasticizer (AE고유동화제 첨가량 변화에 따른 콘크리트의 특성분석에 관한 실험적 연구)

  • 윤기원;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.19-22
    • /
    • 1992
  • Properties of concrete has effected on the dosage variation of AE superplasticizer agent, Therefore, this study is designed for analysis of concrete properies according to the dosage variation of AE superplasticizer agent , and is aimed to analyze the effect slump, air content, compressive strength, resistance of freezing-and-thawing and for presenting the reference data on the practical use.

  • PDF

A Study on the Resistance of Freezing-Thawing for the Material of Concrete or Asphalt Using Smashed Rock (쇄석을 이용한 콘크리트 및 아스팔트용 재료의 동결융해 저항성)

  • Kim, Young-Su;Bang, In-Ho;Heo, No-Young;Lee, Jea-Ho;Choi, Jeong-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.35-47
    • /
    • 2002
  • Soil and rock were yielded during construction of subway in Taegu. Produced rock is a kind of a sedimentary rock with low strength and low durability of shrinkage. So it is difficult using for resources engineering. But in our country, it is very important to use material resources due to lack of natural resources. In this study, after cracking sedimentary rock like black shale and red shale, they are compared with granite which usually used road constriction field to investigate property of use for road construction. Consequently, the engineering character of origin rock is satisfactory, but the soundness test, black shale and red shale are less than KS 12.9%, 37.5% respectively. The result of concrete freezing-thawing test shows that the strength among three materials is not a wide difference but red shale has relatively low strength. The result of asphalt freezing-thawing test with 50 cycles indicates that the stability of red shale in lower than KS 484~561kg on base course, 336~375kg on surface course respectively. A further research should be needed for propriety to the material of shale.

  • PDF

Property Evaluation of the Freeze-Thawing for Lightweight Concrete with Development of Structural Lightweight Aggregates (구조용 경량골재 개발에 따른 경량콘크리트의 동결융해특성에 관한 연구)

  • 장동일;채원규;조광현;김광일;손영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.129-136
    • /
    • 1998
  • In this study, lightweight aggregates were developed to see the possible application as a structural uses. For the evaluation purpose, several testings were conducted to compare the physical characteristics between the controlled lightweight aggregates and other lightweight aggregates purchased from different sources. The tests included property changes of fresh concrete and strength characteristics of hardened concrete for both normal and high strength ranges. In addition, a experiment was performed to analyze the freezing and thawing resistance of new lightweight aggregate concrete against other lightweight aggregate concrete against other lightweight aggregate concretes with some experimental parameters such as lightweight aggregates, curing conditions, and water-cement ratio. The test showed that the new lightweight aggregate could be used structural components. Continuous study will be planned for future evaluations.

  • PDF

Experimental Study on Performance of MgO-based Patching Materials for Rapid Repair of Concrete Pavement (콘크리트 포장의 급속 보수를 위한 산화마그네슘계열 단면복구재의 성능에 대한 실험적 연구)

  • Lee, Hyeongi;Ann, Kiyong;Sim, Jongsung
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.43-55
    • /
    • 2016
  • PURPOSES : This study aims to develop a repair material that can enhance pavement performance, inducing rapid traffic opening through early strength development and fast setting time by utilizing MgO-based patching materials for repairing road pavements. METHODS : To consider the applicability of MgO-based patching materials for repairing domestic road pavements, first, strength development and setting time of the materials were evaluated, based on MgO to $KH_2PO_4$ ratio, water to binder ratio, and addition ratio of retarder (Borax), by which the optimal mixture ratio of the developed material was obtained. To validate the performance of the developed material as a repair material, the strength(compressive strength and bonding strength) and durability (freezing, thawing, and chloride ion penetration resistance) was checked through testing, and its applicability was evaluated. RESULTS : The results showed that when an MgO-based patching material was used, the condensation time was reduced by 80%, and the compressive strength was enhanced by approximately 300%, as compared to existing cement-based repair materials. In addition, it was observed that the strength (compressive strength and bonding strength) and durability (freezing and thawing, and chloride ion penetration resistance) showed an excellent performance that satisfied the regulations. CONCLUSIONS : The results imply that an emergent repair/restoration could be covered by a rapid-hardening cement to meet the traffic limitation (i.e. the traffic restriction is only several hours for repair treatment). Furthermore, MgO-based patching materials can improve bonding strength and durability compared to existing repair materials.

Effects of the Freeze-thaw Process on the Strength Characteristics of Soils (IV) -Insulation Performance beneath the Freezed Tested Banking by Inclusion of Insulation Material- (동결-융해작용이 흙의 강도특성에 미치는 영향 (IV) - 단열재를 삽입한 동결성토의 단열거동 -)

  • 유능환;박승범;유영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.39-46
    • /
    • 1990
  • This paper was analized the thermal conductivity of polystylene (TENSAR- GEOGRID) embeding into the subbase through frost penetration depth, frost heave, change of bearing capacity, and soil moisture movement due to freezing, thawing and icing actions, and their results were as follows : 1.The change of temperature into the sub-base was much increased by the Tensar-Geogrid insertion, and the frost penetration and frost heave were decreased as the thinner of the insulation thickness but the thawing velocity of melting period was appeared to be faster in case of non-insulated. 2.The frost heave had a close relationship with the thickness of insulations which was reasonably included anti-frost effects. 3.The moisture content during the freezing period of upper layer of the insulation insertion was increased by 15 per cent but it was returned to initial state of the thawing period, and at the down layer temporarily increased by 10 per cent and returned to the original state at once. 4.The insulation was acted as a function of distribution of surcharge, and the settlement of the sub-base was about 1.5 mm under 15 tonnage of load and which was included within the allowable limits. 5.The sliding resistance due to the icing which was induced by the insulation insertion into the sub-base was appeared as more 40 per cent than noninsulation area, so that the insulations should be restricted on the place such as mountains, curved and cross area which were required the braking power under the traffics.

  • PDF

Durability Assessment of High Strength Concrete with High Volume Mineral Admixture (다량의 광물질 혼화재를 사용한 고강도 콘크리트의 내구성 평가)

  • Baek, Chul-Woo;Kim, Hoon-Sang;Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.641-649
    • /
    • 2015
  • The purpose of this study was to assess the durability of high-strength concrete with high volume mineral admixture (HVMAC) derived from previous studies within ternary blended concrete (TBC) and normal concrete (NC). Four durability evaluation types such as chloride penetration resistance, freezing and thawing resistance, carbonation resistance in two pre-treatment conditions, and sulfuric acid and sulfate resistance using 5% sulfuric acid ($H_2SO_4$), 10% sodium sulfate ($Na_2SO_4$), and 10% magnesium sulfate ($MgSO_4$) solution were selected and performed in this study. HVMAC showed the excellent chloride penetration resistance in any age and the freezing and thawing durability close to 100%. In addition, HVMAC affected more reduction in carbonation resistance than TBC. When the curing time was increased, to create a concrete internal organization densely improved resistance to carbonation. HVMAC also showed the most superior in sulfuric acid and sulfate resistance. As the reduction of calcium hydroxide and $C_3A$ to apply a large amount of admixture reduced the swelling and cracking of concrete, the strength reduction and mass change of concrete was found to be small indicated.