• Title/Summary/Keyword: resin post

Search Result 381, Processing Time 0.026 seconds

Evaluation of bonding efficiency between facial silicone and acrylic resin using different bonding agents and surface alterations

  • Shetty, Uttam Sadashiv;Guttal, Satyabodh Shesharaj
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.121-126
    • /
    • 2012
  • PURPOSE. The aim of the study was to evaluate the effect of 3 silicone primers and 3 surface characterization of acrylic resin surface on bond strength between silicone elastomer and acrylic resin. MATERIALS AND METHODS. 96 Cosmesil silicones bonded to heat-curing acrylic resin were fabricated with the dimension of $75{\times}10{\times}3$ mm. The 3 primers used in this study were G611 platinum primer, A-330 Gold platinum primer, and cyanoacrylates resin. Specimens without primer were used as control. The 3 types of surface characterization done were retentive holes with 1.5 mm in diameter and 0.5 mm deep, retentive beads of 0.6 mm diameter and the third type which was plain without any characterization. The specimens were then checked for bond strength by subjecting them to $180^{\circ}$ peel test on a universal testing machine. The obtained results were then subjected to statistical analysis using 2-way ANOVA and Scheff$\acute{e}$ multiple post hoc procedures. The statistical significance was set at 5% level of significance. RESULTS. The maximum bond strength was seen for samples in which A-330G primer was used followed by G611 primer. The control group showed the minimum bond strength. Surface characterization of retentive holes increased the bond strength considerably as compared to retentive beads and samples without any surface characterization. CONCLUSION. Within the limitations of the study, A-330G primer was more compatible with Cosmesil M511 silicone and has better bonding of Cosmesil to acrylic resin. Retentive holes made on acrylic surface increased the bond strength considerably than those without any surface characterization.

Light transmittance of CAD/CAM ceramics with different shades and thicknesses and microhardness of the underlying light-cured resin cement

  • Jafari, Zahra;Alaghehmand, Homayoon;Samani, Yasaman;Mahdian, Mina;Khafri, Soraya
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.3
    • /
    • pp.27.1-27.9
    • /
    • 2018
  • Objectives: The aim of this in vitro study was to evaluate the effects of the thickness and shade of 3 types of computer-aided design/computer-aided manufacturing (CAD/CAM) materials. Materials and Methods: A total of 120 specimens of 2 shades (A1 and A3) and 2 thicknesses (1 and 2 mm) were fabricated using VITA Mark II (VM; VITA Zahnfabrik), IPS e.max CAD (IE; IvoclarVivadent), and VITA Suprinity (VS; VITA Zahnfabrik) (n = 10 per subgroup). The amount of light transmission through the ceramic specimens was measured by a radiometer (Optilux, Kerr). Light-cured resin cement samples (Choice 2, Bisco) were fabricated in a Teflon mold and activated through the various ceramics with different shades and thicknesses using an LED unit (Bluephase, IvoclarVivadent). In the control group, the resin cement sample was directly light-cured without any ceramic. Vickers microhardness indentations were made on the resin surfaces (KoopaPazhoohesh) after 24 hours of dark storage in a $37^{\circ}C$ incubator. Data were analyzed using analysis of variance followed by the Tukey post hoc test (${\alpha}=0.05$). Results: Ceramic thickness and shade had significant effects on light transmission and the microhardness of all specimens (p < 0.05). The mean values of light transmittance and microhardness of the resin cement in the VM group were significantly higher than those observed in the IE and VS groups. The lowest microhardness was observed in the VS group, due to the lowest level of light transmission (p < 0.05). Conclusion: Greater thickness and darker shades of the 3 types of CAD/CAM ceramics significantly decreased the microhardness of the underlying resin cement.

Development of Translucent RP Material by Post-processing of FDM ABSi (FDM ABSi의 후가공을 통한 반투명 RP 재료의 개발)

  • Jeong, Woo-Byok;Jin, Young-Sung;Lee, Hong-Kyung;Ahn, Sung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1193-1198
    • /
    • 2003
  • Translucent plastics are commonly used in packaging of mechanical and/or electrical components. Although Rapid Prototyping(RP) provides prototypes of various materials, translucent RP parts are not readily available from most RP processes. ABSi is one of the ABS materials available for Stratasys' FDM process, and the material has potential to be translucent. In this paper, two post-processing techniques were applied in order to increase optical transmissivity of the parts made of FDM's ABSi. First, elevated temperature condition was applied resulting in increased transmissivity while dimensional shrinkage was observed. Second, resin infiltration and surface sanding provided upto 16% transmissivity without shrinkage. These post-processes can be selectively applied to increase transmissivity of ABSi parts. Thus, translucent FDM part can be fabricated from regular FDM process followed by the post-processes developed in this study.

  • PDF

Study on Heat Resistance Anaerobic Adhesive Which Expands When Post Cured

  • Zhai, Haichao;Li, Yinbai;Lin, Xinsong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.1
    • /
    • pp.9-12
    • /
    • 2002
  • In this paper, N,N-m-phenyenedimaleimide (m-PDM), Polyamide Resin (PI) and Metallic dimethacrylate etc. influencing the heat resistance of anaerobic adhesive has been studied, an anaerobic adhesive composition capable of post-cure expansion and $230^{\circ}C$ temperature resistance comprising a multifunctional methacrylate and m-PDM capable of effectuating expansion upon post-cure has been developed. A homogeneous mixture of a monomer and m-PDM are subjected to a first cure heat stage (Room Temperature) wherein a rigid partially-cured plastic is formed and a post-cure heat stage ($150^{\circ}C$) to effectuate permanent expansion of cured adhesive composition.

  • PDF

Effect of dimethyl sulfoxide on bond durability of fiber posts cemented with etch-and-rinse adhesives

  • Shafiei, Fereshteh;Memarpour, Mahtab;Sarafraz, Zahra
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.251-258
    • /
    • 2016
  • PURPOSE. This study was undertaken to investigate whether use of an adhesive penetration enhancer, dimethyl sulfoxide (DMSO), improves bond stability of fiber posts to root dentin using two two-step etch-and-rinse resin cements. MATERIALS AND METHODS. Forty human maxillary central incisor roots were randomly divided into 4 groups after endodontic treatment and post space preparation, based on the fiber post/cement used with and without DMSO pretreatment. Acid-etched root dentin was treated with 5% DMSO aqueous solution for 60 seconds or with distilled water (control) prior to the application of Excite DSC/Variolink II or One-Step Plus/Duolink for post cementation. After micro-slicing the bonded root dentin, push-out bond strength (P-OBS) test was performed immediately or after 1-year of water storage in each group. Data were analyzed using three-way ANOVA and Student's t-test (${\alpha}$=.05). RESULTS. A significant effect of time, DMSO treatment, and treatment${\times}$time interaction were observed (P<.001). DMSO did not affect immediate bonding of the two cements. Aging significantly reduced P-OBS in control groups (P<.001), while in DMSO-treated groups, no difference in P-OBS was observed after aging (P>.05). CONCLUSION. DMSO-wet bonding might be a beneficial method in preserving the stability of resin-dentin bond strength over time when fiber post is cemented with the tested etch-and-rinse adhesive cements.

A Study on the Development and Dielectric Properties of Insulating Materials for Super-Conductor -For Matrix of Composite Materials- (초전도체 절연용 재료의 전기적 절연 특성과 개발에 관한 연구-복합 재료의 매트릭스에 대하여-)

  • 조정수;최세원;김종경;이규철;이종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.7
    • /
    • pp.511-523
    • /
    • 1989
  • This paper investigates physical properties, the electrical and mechanical characteristics of the epoxy resin with different curing methods and postcuring conditions at room temperature or cryogenic temperature (LN2). According to the results in this paper, first, it is found that the physical properties, electrical and mechanical characteristics of the epoxy resin are largely affected by the interior reaction temperature on the curing. Thus, in the fabrication of the sample, several excellent characteristics of the sample are obtained by controlling the interior reaction temperature of the epoxy resin. Second, the sample having optimal electrical and mechanical characteristics is obtained for the repetitive post-curing method at 100c in view point of the post-curing conditions of the epoxy resin. Third, it appears that tan and characteristics at LN2 temperature are about half of those at room temperature. Fourth, it appears that the dielectric strength of the epoxy resin at LN2 temperature is higher by about 0.6-1.0 MV/cm than that at room temperature. The heat-aging of the epoxy resin due to the micro-defect and excess fever-movement have been noticed to affect dielectric strength at LN2 temperature more significantly than at room temperature.

In vitro study of Polymerization shrinkage-strain kinetics of dental resin cements (치과용 레진 시멘트의 중합 수축률 특성에 관한 연구)

  • Kim, Tae-Hoon;Yang, Jae-Ho;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Purpose: The shrinkage of dental resin cement may cause several clinical problems such as distortion that may jeopardize the accurate fit to the prepared tooth and internal stress within the restorations. It is important to know the polymerization shrinkage-strain of dental resin cement to reduce clinical complications. The purpose of this study was to investigate the polymerization shrinkage-strain kinetics of six commercially available dental resin cements. Material and methods: Three self-cure resin cements (Fujicem, Superbond, M-bond) and three dual-cure resin cements (Maxcem, Panavia-F, Variolink II) were investigated. Time dependent polymerization shrinkage-strain kinetics of the materials were measured by the Bonded-disk method as a function of time at $23^{\circ}C$, with values particularly noted at 1, 5, 10, 30, 60, 120 min after mixing. Five recordings were taken for each materials. The data were analyzed with one-way ANOVA and Scheffe post hoc test at the significance level of 0.05. Results: Polymerization shrinkage-strain values were 3.72%, 4.19%, 4.13%, 2.44%, 7.57%, 2.90% for Fujicem, Maxcem, M bond, Panavia F, Superbond, Variolink II, respectively at 120 minutes after the start of mixing. Panavia F exhibited maximum polymerization shrinkage-strain values, but Superbond showed minimum polymerization shrinkage-strain values among the investigated materials (P < .05). There was no significant differences of shrinkage-strain value between Maxcem and M bond at 120 minutes after the start of mixing (P > .05). Most shrinkage of the resin cement materials investigated occurred in the first 30 minutes after the start of mixing. Conclusion: The onset of polymerization shrinkage of self-cure resin cements was slower than that of dual-cure resin cements after mixing, but the net shrinkage strain values of self-cure resin cements was higher than that of dual-cure resin cements at 120 minutes after mixing. Most shrinkage of the dental resin cements occurred in the first 30 minutes after mixing.

Effect of the restorative technique on load-bearing capacity, cusp deflection, and stress distribution of endodontically-treated premolars with MOD restoration

  • da Rocha, Daniel Maranha;Tribst, Joao Paulo Mendes;Ausiello, Pietro;Dal Piva, Amanda Maria de Oliveira;Rocha, Milena Cerqueira da;Di Nicolo, Rebeca;Borges, Alexandre Luiz Souto
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.33.1-33.12
    • /
    • 2019
  • Objectives: To evaluate the influence of the restorative technique on the mechanical response of endodontically-treated upper premolars with mesio-occluso-distal (MOD) cavity. Materials and Methods: Forty-eight premolars received MOD preparation (4 groups, n = 12) with different restorative techniques: glass ionomer cement + composite resin (the GIC group), a metallic post + composite resin (the MP group), a fiberglass post + composite resin (the FGP group), or no endodontic treatment + restoration with composite resin (the CR group). Cusp strain and load-bearing capacity were evaluated. One-way analysis of variance and the Tukey test were used with ${\alpha}=5%$. Finite element analysis (FEA) was used to calculate displacement and tensile stress for the teeth and restorations. Results: MP showed the highest cusp (p = 0.027) deflection ($24.28{\pm}5.09{\mu}m/{\mu}m$), followed by FGP ($20.61{\pm}5.05{\mu}m/{\mu}m$), CR ($17.62{\pm}7.00{\mu}m/{\mu}m$), and GIC ($17.62{\pm}7.00{\mu}m/{\mu}m$). For load-bearing, CR ($38.89{\pm}3.24N$) showed the highest, followed by GIC ($37.51{\pm}6.69N$), FGP ($29.80{\pm}10.03N$), and MP ($18.41{\pm}4.15N$) (p = 0.001) value. FEA showed similar behavior in the restorations in all groups, while MP showed the highest stress concentration in the tooth and post. Conclusions: There is no mechanical advantage in using intraradicular posts for endodontically-treated premolars requiring MOD restoration. Filling the pulp chamber with GIC and restoring the tooth with only CR showed the most promising results for cusp deflection, failure load, and stress distribution.

Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin

  • Arjmand, Nushin;Boruziniat, Alireza;Zakeri, Majid;Mohammadipour, Hamideh Sadat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • PURPOSE. The purpose of the current study was to evaluate the effect of incorporating nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) into a self-etching primer of a resin cement on the microtensile bond strength of dentin, regarding the proven antibacterial feature of NAg and remineralizing effect of NACP. MATERIALS AND METHODS. Flat, mid-coronal dentin from 20 intact extracted human third molars were prepared for cementation using Panavia F2.0 cement. The teeth were randomly divided into the four test groups (n=5) according to the experimental cement primer composition: cement primer without change (control group), primer with 1% (wt) of NACP, primer with 1% (wt) of physical mixture of NACP+Nag, and primer with 1% (wt) of chemical mixture of NACP+Nag. The resin cement was used according to the manufacturer's instructions. After storage in distilled water at $37^{\circ}C$ for 24 h, the bonded samples were sectioned longitudinally to produce $1.0{\times}1.0mm$ beams for micro-tensile bond strength testing in a universal testing machine. Failure modes at the dentin-resin interface were observed using a stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's post-hoc tests and the level of significance was set at 0.05. RESULTS. The lowest mean microtensile bond strength was obtained for the NACP group. Tukey's test showed that the bond strength of the control group was significantly higher than those of the other experimental groups, except for group 4 (chemical mixture of NACP and NAg; P=.67). CONCLUSION. Novel chemical incorporation of NAg-NACP into the self-etching primer of resin cement does not compromise the dentin bond strength.

Effect of dentin pretreatment and curing mode on the microtensile bond strength of self-adhesive resin cements

  • Youm, Seung-Hyun;Jung, Kyoung-Hwa;Son, Sung-Ae;Kwon, Yong-Hoon;Park, Jeong-Kil
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.317-322
    • /
    • 2015
  • PURPOSE. The aim was to evaluate the effect of curing mode and different dentin surface pretreatment on microtensile bond strength (${\mu}TBS$) of self-adhesive resin cements. MATERIALS AND METHODS. Thirty-six extracted human permanent molars were sectioned horizontally exposing flat dentin surface. The teeth were divided into 12 groups (3 teeth/group) according to the dentin surface pretreatment methods (control, 18% EDTA, 10% Polyacrylic acid) and curing mode (self-curing vs. light-curing) of cement. After pretreatment, composite resin blocks were cemented with the following: (a) G-CEM LinkAce; (b) RelyX U200, followed by either self-curing or light-curing. After storage, the teeth were sectioned and ${\mu}TBS$ test was performed using a microtensile testing machine. The data was statistically analyzed using one-way ANOVA, Student T-test and Scheffe's post-hoc test at P<.05 level. RESULTS. For G-CEM LinkAce cement groups, polyacrylic acid pretreatment showed the highest ${\mu}TBS$ in the self-cured group. In the light-cured group, no significant improvements were observed according to the dentin surface pretreatment. There were no significant differences between curing modes. Both dentin surface pretreatment methods helped to increase the ${\mu}TBS$ of RelyX U200 resin cement significantly and degree of pretreatment effect was similar. No significant differences were found regarding curing modes except control groups. In the comparisons of two self-adhesive resin cements, all groups within the same pretreatment and curing mode were significantly different excluding self-cured control groups. CONCLUSION. Selecting RelyX U200 used in this study and application of dentin surface pretreatment with EDTA and polyacrylic acid might be recommended to enhance the bond strength of cement to dentin.