• Title/Summary/Keyword: resin content

Search Result 684, Processing Time 0.024 seconds

Effect of Cationic Initiator Content on Electron-beam Curing of Difunctional Epoxy Resin (양이온 개시제 함량이 2관능성 에폭시 수지의 Electron-beam 경화에 미치는 효과)

  • Soo-Jin Park;Gun-Young Heo;Jae-Rock Lee;Dong Hack Suh
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.250-256
    • /
    • 2003
  • In this work, the effect of cationic initiator content on the electron-beam (EB) curing process of diglycidylether of bisphenol-A (DGEBA) resin was studied using near-infrared spectroscopy (NIRS), thermogravimetric analysis (TGA), and critical stress intensity factor $(K_{IC})$. Benzylquinoxalinium hexafluoroantimonate (BQH) were used as an initiator and its content was varied from 0.5 to 3 phr. NIRS measurements showed that the hydroxyl group of EB-cured epoxy resin was increased with increasing the BQH content. Thermal stability and $K_{IC}$ value of EB-cured epoxy resin were increased with increasing the BQH content but were decreased above 2 phr content. These results could be attributed to the decrease of the conversion and degree of crosslinking. In another word, the conversion and degree of crosslinking were restricted by the incomplete network structure from high reactivity at the BQH content above 2 phr, resulting in decreasings of thermal stability and $K_{IC}$.

A Development of the Stabilization Technology for the Solid Form of Radioactive Waste (방사성폐기물 아스팔트 고화체 안정화 특성연구)

  • 김태국;이영희;이강무;안섬진;손종식
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.202-206
    • /
    • 2003
  • In this study, a modified bituminization technology has been developed, which needs no grinding of the granular resin waste, and enables the solid form to keep its shape stability as good as that of a cemented solid from Also, the study intended to apply the developed technology to the practical treatment of radioactive resin waste. In the experiment, the granular type resin was used and the straight-run distillation bitumen with penetration rate 60/70 was used as the solidifying agent. The PE was used as the additive. The shape stability increased remarkably with the additive of PE, which act as a binder in the solid form. The shape of the solid form was maintained without failure during the long-term exposure test when the additive content of spent PE is more than 10wt%. The proper ranges of bitumen content, PE content and operating temperature are 30-50wt%, 10-20wt% and $180^{\circ}C$ respectively. The bituminized solid form of radioactive resin waste by the technology of this study has the remarkably superior quality than the conventional solid forms, partially for the shape stability.

  • PDF

The Effect of Mass Transfer on the Cure Properties of the Urea Resin Moulding Compounds Under the Drying Process (건조 공정 중 요소 수지 성형재료의 경화 특성에 대한 물질전달 효과)

  • Kim, Sang Yeul;Choi, Il Gon;Kim, Byoung Chul
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.681-686
    • /
    • 2002
  • In the industrial field, the theory of drying process is different from the practical application, and it is effective to reduce energy by recirculation of the heat of exhausting gas. But the study of this field may not be performed still. The cure properties of the urea resin moulding compounds was investigated according to drying temperature, drying time, recycle rate of exhausting gas and moulding temperature in the process of drying and moulding. We obtained the following results; water content of material decreases with increasing drying time and drying temperature, and the rate of drying also decreases with increasing recycle rate of exhausting gas. Specially, The cure fluidity of the urea resin moulding compounds decreases, with increasing drying temperature, recycle rate of exhausting gas and moulding temperature. And the correlation equations on water content and cure fluidity of the urea resin moulding material were obtained through a regression analysis of experimental data.

Preparation and Properties Enhancement of Epoxy Resin Employing Poly(amic acid) (PAA) (Poly(amic acid) (PAA)를 함유한 에폭시 수지의 제조 및 물성 향상)

  • 이용택;배성호;박병천
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.254-262
    • /
    • 2001
  • Epoxy resin based upon the N,N'-diglycidylaniline which is widely used in optic, electronic and composite material. We modified this epoxy resin with poly(amic acid) (PAA) that is a precursor of polyimide. To improve the mechanical property we controlled PAA content and imidization ratio. PI-modified epoxy blends were prepared for the formation of IPN structure. The possible reaction in the epoxy resin/PAA blends were investigated by FT-IR and inherent viscosity techniques. Thermal properties are measured by TGA, DSC, and TMA. Mechanical properties are measured by UTM and impact test machine. Morphology is investigated by SEM. Thermal stability improved with increasing the content of PAA in blends. As the content of PAA increases in blend, the glass transition temperature and thermal expansion coefficient decreases. Increasing impact strengths in J/m in the range of 920∼2412 were observed in blends. The PAA segment may act as a toughening agent in the epoxy networks, thus contributing the impact strength improvement of the blends.

  • PDF

Comparison of Resin Impregnation and Mechanical Properties of Composites Based on Fiber Plasma Treatment (섬유 플라즈마 처리에 따른 복합재료의 수지 함침성 및 기계적 특성 비교)

  • Seong Baek Yang;Donghyeon Lee;Yongseok Lee;Dong-Jun Kwon
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.388-394
    • /
    • 2023
  • In composites manufacturing, increasing resin impregnation is a key way to speed up the manufacturing process and improve product quality. While resin improvement is important, simple fiber surface treatments can also improve resin flowability. In this study, different plasma treatment times were applied to carbon fiber fabrics to improve the impregnation between resin and fiber. Electrical resistivity measurements were used to evaluate the dispersion of resin in the fibers, which changed with plasma treatment. The effect of fiber surface treatment on resin spreadability could be observed in real time. When inserting a carbon fiber tow into the resin, the amount of resin that soaked into the tow was measured to objectively compare resin impregnation. Five minutes of plasma treatment improved the tensile and compressive strength of the composite by more than 50%, while reducing the void content and increasing the fire point impregnation flow rate. Finally, a dynamic flexural fatigue test was conducted using a portion of the composite used as an architectural composite part, and the composite part did not fail after one million cycles of a 3 kN load.

Viscoelastic Properties of MF/PVAc Hybrid Resins as Adhesive for Engineered Flooring by Dynamic Mechanical Thermal Analysis

  • Kim, Sumin;Kim, Hyun-Joong;Yang, Han-Seung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.37-45
    • /
    • 2006
  • The viscoelastic properties of blends of melamine-formaldehyde (MF) resin and poly(vinyl acetate) (PVAc) for engineered flooring used on the Korean traditional ONDOL house floor heating system were investigated by dynamic mechanical thermal analysis (DMTA). Because MF resin is a thermosetting adhesive, the effect of MF rein was shown across all thermal behaviors. The addition of PVAc reduced the curing temperature. The DMTA thermogram of MF resin showed that the storage modulus (E') increased as the temperature was further increased as a result of the cross-linking induced by the curing reaction of the resin. The storage modulus (E') of MF resin increased both as a function of increasing temperature and with increasing heating rate. From isothermal DMTA results, peak $T_{tan{\delta}}$ values, maximum value of loss modulus (E") and the rigidities (${\Delta}E$) of MF/PVAc blends at room temperature as a function of open time, peak $T_{tan{\delta}}$ and maximum loss modulus (E") values were found to increase with blend MF content. Moreover, the rigidities of the 70:30 and 50:50 MF/PVAc blends were higher than those of the other blends, especially of 100% PVAc or MF. We concluded that blends the MF/PVAc blend ratios correlate during the adhesion process.

Synthesis of conducting and magnetic nanocomposite of cross-linked aniline sulfide resin

  • Hosseini, Seyed Hossein
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.233-242
    • /
    • 2014
  • Magnetic and conducting aniline sulfide resin cross-linked (ASC-Fe3O4) nanocomposite has been prepared in the presence of aniline sulfide resin (ASR), aniline, $Fe_3O_4$ coated by polyethylene glycol (PEG) and initiator. The magnetic properties of the resulting composites showed ferromagnetic behavior, such as high-saturated magnetization (Ms= 41 emu/g), and coercive force (Hc=1.5 Oe). The saturated magnetization was increased by increasing of $Fe_3O_4$ content and decreased by increasing aniline ratio. The transmission electron micrograph (TEM) and X-ray diffraction proved that nanometer-sized about 20-30 nm $Fe_3O_4$ in the composite. The average size of ASC-$Fe_3O_4$ nanocomposite with core-shell structure was about 50-60 nm, and polydisperse. This approach may also be extended to the synthesis and modification of other polymers. Electrical conductivity of aniline sulfide resin cross-linked (ASC) nanocomposite has been studied by four-point probe method and produced $3.3{\times}10^{-4}S/cm$ conductivity for it. The conductivity of the composites at room temperature depended on the $Fe_3O_4$, aniline ratio and doping degree. The thermogravimetry analysis (TGA) results showed that this resin is thermal resistance near of $500^{\circ}C$. So, It can be used for resistance thermal coating for military applications. $Fe_3O_4$-PASC nanocomposite has been flexible structure with electrical and magnetic properties.

Fabrication of Macro-porous Carbon Foams from Spherical Phenolic Resin Powder and Furfuryl Alcohol by Casting Molding (구상 페놀수지 분말과 푸르프릴 알코올로부터 주형성형에 의한 매크로 다공성 카본 폼의 제조)

  • Jeong, Hyeondeok;Kim, Seiki
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.502-507
    • /
    • 2019
  • Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100-450 ㎛ are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80℃ and 200℃ in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800℃ for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.

Development of a Process Technique for Heavy Metal Removal in the Production of Recycled Synthetic Resin Materials (재생 합성수지 원료생산을 위한 중금속 이물질 제거 공정기술 개발)

  • Kim, Jung-Ho;Cha, Cheon-Seok;Kim, Jae-Yeol;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • Recycled synthetic resin materials produced from waste vinyl and waste plastic contain many foreign substances. Plastic products made from this recycled resin materials containing foreign substances are of poor quality, with reduced the strength and rigidity. Foreign substances include heavy metals, cement, foil, dyed paper and dust. In this study, the scratch-Dies process; which remove foreign sbustances, with precision and automation, through a three-stage mesh filter, is designed. The process is evaluated with finite element analysis according to vibration loading and make. After installing the manufactured equipment, recycled resin was producde, and its heavy metal content was evaluated. Recycled synthetic resin materials were also used plastic products and evaluate their strength. In addition, the change in production was assessed.

Preparation of Glass-like High-density Carbon by Polymerization of Thermosetting Resin (열경화성 수지의 축중합에 의한 고밀도 유리상 탄소의 제조)

  • Kim, Ji-Hyun;Kim, Hee-Seok;Lim, Yun-Soo;Park, Hong-Soo;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2001
  • Due to its low density, good mechanical properties and chemical inertness, glassy carbon(GC) has been studied for appications in several fields. A raw thermosetting resin of furanic resin was polymerized with a curing agent of p-toluenesulfonic acid monohydrate. The maximum yield of GC was obtained at the curing agent content of 1.0 wt% in furanic resin. In order to make thick GC, the affect of graphite filler addition to the furanic resin was investigated. The density and electrical resitivity of GC after graphitization were 1.45 $g/cm^{3}$ and 47 ${\times}10^{-4}$ ${\Omega}$ ${\cdot}$ cm respectively and the amorphous structure of GC was confirmed by XRD profiles with very broad peaks comparable to those of graphite at $206^{\circ}$ and $45^{\circ}$.