• Title/Summary/Keyword: resin compositions

Search Result 74, Processing Time 0.024 seconds

Studies on the Physico-chemical Properties of Vitrified Forms of the Low- and Intermediate-level Radioactive Waste (${\cdot}$저준위 방사성폐기물 유리고화체의 물리${\cdot}$화학적 특성 연구)

  • Kim, Cheon-Woo;Park, Byoung-Chul;Kim, Hyang-Mi;Kim, Tae-Wook;Choi, Kwan-Sik;Park, Jong-Kil;Shin, Sang-Woon;Song, Myung-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.839-845
    • /
    • 2001
  • In order to vitrify the Ion-Exchange Resin(IER), Dry Active Waste(DAW), and borate concentrate generated from the commercial nuclear facilities, the glass formulation study based on the their compositions was performed. Two glasses named as RG-1 and DG-1 were formulated as the candidate glasses for the vitrification of hte IER and DAW, respectively. A glass named as MG-1 was also formulated as a candidate glass for the vitrification of the mixed wastes containing the IER, DAW, and borate concentrate. The process parameters, product qualities, and economics were evaluated for the candidate glasses and confirmed experimentally for the some properties. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. the product qualities such as glass density, chemical durability, phase stability, etc. were satisfactory. In case of vitrifying the wastes using our developed glass formulation study, the volume reduction factors for the IER, DAW and mixed wastes were evaluated as 21, 89 and 75, respectively.

  • PDF

Effects of Crosslinking Agent and Flame Retardant on the Dielectric Properties of Poly(phenylene ether)-based Polymer Substrate Material (폴리페닐렌에테르계 고분자 기판 소재의 유전특성에 대한 가교제 및 난연제의 영향)

  • Kim, Dong-Kook;Park, Seong-Dae;Yoo, Myong-Jae;Lee, Woo-Sung;Kang, Nam-Kee;Lim, Jin-Kyu;Kyoung, Jin-Bum
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • Polymer substrates were fabricated by using poly (phenylene ether) as a base resin, N,N'-m-phenylenedimaleimide (PDMI) as a crosslinking agent and decabromodiphenylethane as a flame retardant. The effects of crosslinking agent and flame retardant on physical properties such as dielectric property of the substrate were investigated. Thermal curing feature of PDMI with or without an initiator was analyzed by DSC, and then, PPE-PDMI test compositions were designed based on this result. Composite sheets were cast by film coater, laminated under vacuum and pressure, and then, the changes of dielectric constant, dielectric loss, peel strength, solder heat resistance and inflammability according to increasing amount of PDMI and flame retardant were evaluated, Dielectric constant and dielectric loss showed increasing trend with increasing amount of PDMI and flame retardant, but solder heat resistance and inflammability were improved. Peel strength was obtained higher than 1 kN/m when PDMI above 10 wt% was added, but slightly decreased as the amount of flame retardant increased. From the measured gel contents, the reaction mechanism of PPE-PDMI system was deduced to the formation of network structure by crosslinking PDMI with PPE rather than the formation of semi-IPN structure. In conclusion, the polymer composite substrate materials with dielectric constant of 2.52$\sim$2.65 and dielectric loss below 0.002 at 1 GHz were obtained and they will be proper for high frequency applications.

A case study of verifying a suicide by carbon monoxide intoxication committed by burning an ignition charcoal briquette (착화탄 연소에 의한 일산화탄소 중독사에서 자살입증에 관한 사례연구)

  • Sung, Tae-myung;Jo, Ju-ik;Ahn, Phil-sang
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.398-408
    • /
    • 2015
  • Carbon monoxide (CO) intoxication, arising from CO from an ignited charcoal briquette (ICB), is a popular means of committing suicide in Korea. Most CO intoxications are related to suicide attempts; however, the possibility of a homicide disguised as a suicide cannot be ruled out. Therefore, forensic investigation of the deceased and the crime scene is crucial to confirm that the deceased committed suicide. Detection of the components of an ICB on the objects suspected of being contacted by the deceased, such as the hands, nostrils, and doorknobs, is essential for linking the crime scene to the victim in the case of suicides by ignited ICBs. The traces from an ICB were analyzed by investigating the morphological characteristics and obtaining elemental compositions. The ICBs were completely different from blackened wood, as detected by discriminant analysis with the elements of carbon and oxygen. We analyzed one case of CO intoxication to demonstrate an excellent procedure for verifying whether a suicide occurred with an ICB. We employed SEM-EDX for the analysis of an ICB, microscope-FT/IR and pyrolysis-GC/MS for a partly burnt resin-type substance, GC/MS for diphenhydramine (a sleeping drug), and GC/TCD for the CO-Hb level. We detected traces of an ICB on the hands, nostrils, and doorknobs, which were all discriminated into an ICB group. Detection of ICB traces from the nostrils could indicate that the deceased started the fire themselves to commit suicide. The partially burnt black material was analyzed as an acrylronitrilestyrene polymer, which is normally used to make bags for carrying or wrapping and could be assumed to have been used to transport the ICB. Diphenhydramine, a sleeping drug, was detected at a level of 2.3 mg/L in the blood, which was lower than that in fatal cases (8-31 mg/L; mean 16 mg/L). A CO-Hb level of 79% was found in the blood, which means that the cause of death was CO intoxication. The steps shown here could represent an ideal method for reaching a verdict of suicide by CO intoxication produced by burning an ICB in a sealed room or a car.

Effects of Wood Particles and Steel Wire Compositions on Physical and Mechanical Properties of the Boards (목재(木材)파아티클과 철선(鐵線) 복합체(複合體)가 보오드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 미치는 영향(影響))

  • Park, Heon;Lee, Pill-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.3-44
    • /
    • 1986
  • In order to obtain the basic physical and mechanical properties of steel wire reinforced particleboard, particleboards were formed with large particles through 2.11 mm (12 meshes) and retained on 1.27mm (20 meshes) sieves and small particles through 1.27mm (20 meshes) and retained on 0.42mm (60 meshes) sieves from the plywood mill wastes of meranti (Shorea spp.) in the form of pallmanchips, applying urea-formaldehyde resin as an adhesive on the particle surface in 10 percent on the oven dried weight of particles, and arranging steel wires of 1mm in diameter 5,10,15,20, and 25mm in longitudinal and transverse direction with crossing in the mid of the board depth in single layer boards, 10mm in longitudinal or transverse direction without crossing in two layers and 10mm in longitudinal and transverse directions with and without crossing in three steel wire layers boards. The stepwise 9-minutes-multi-pressing schedule in 5 minutes at 35 kgf/$cm^2$, 2.5 minutes at 25 kgf/$cm^2$. and 1.5 minutes at 15 kgf/$cm^2$ was applied for $300{\times}200{\times}13$mm board at the temperature of 160$^{\circ}C$ in a hot press. Specific gravity, thickness swelling, bending properties of modulus of rupture (MOR), modulus of elasticity(MOE), work to proportional limit, and work to ultimate load, internal bond (IB), and screw holding power(SHP) of the reinforced boards were analyzed on the wire openings and wire layers. The results obtained are summarized as follows; 1) In specific gravity, particleboards with large particles and small particles had higher value with more steel wire placements and more steel layers composition, 2) Particleboards with large particles in accordance with more steel wire liners composition gave very poor thickness swelling. 3) The mechanical properties of particleboards formed with large or small particles were reinforced with more steel wire layers. Therefore, bending strength was improved in modulus of rupture, modulus of elasticity, and work to ultimate load. Especiallv, particleboards with two or three steel wire layers showed the tension lamination effect when the steels in lower steel wire layer were oriented parallel to the board length. 4) The modulus of rupture, modulus of elasticity, and work to ultimate load in bending varied with opening area, distance of lengthwise wires multipled by distance of transverse wires. Particleboards formed with large particles resulted in higher value in modulus of rupture with 1.5-3 $cm^2$ opening area, 1-2cm distance between transverse wires, and 1.5-2.5cm distance between lengthwise wires. Particle boards formed with small particles showed higher value with 0.5-1.5$cm^2$ or 3.75-6.25 $cm^2$ opening area, 0.5 or 2.5cm distance between transverse wires. 5) In modulus of elasticity, particleboards formed with large particles with one steel wire layer suggested higher value with 5-3$cm^2$ opening area, 1-2.5cm distance between transverse wires and also 1-2.5 cm distance between lengthwise wires. Particleboards formed with small particles showed higher value with 0.75-1.25$cm^2$ or 3-6.25$cm^2$ opening area and 0.5 or 2.5cm distance between transverse wires. 6) Particleboards formed with large particles gaved higher value in work to ultimate load with 1-3$cm^2$ opening area. Particleboards formed with small particles showed increasing tendancy with decreasing opening area. 7) In internal bond and screw holding power, particleboards formed with large particles had increasing value in two and three steel wire layers compositions, but particleboards formed with small particles showed no difference. Particleboards formed with large particles containing one steel wire layer showed no difference in internal bond and screw holding power, and particleboards formed with small panicles containing one steel wire layer resulted in increasing value in internal bond and decreasing value in screw holding power in accordance with increase in opening area.

  • PDF