• Title/Summary/Keyword: resin acid

Search Result 775, Processing Time 0.032 seconds

A STUDY ON THE EFFECT OF DENTIN BONDING AGENTS APPLIED OVER ENAMEL ABOUT THE BOND STRENGTH OF COMPOSITE RESIN (접착강화제가 치아경조직과의 접착강도 변화에 미치는 영향에 관한 연구)

  • Choi, Woong-Dae;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 1995
  • The purpose of this study was to investigate the effect of dentin bonding agents on the bond strength of composite resin restorations in case of applying the dentin bonding agents to acid etched enamel surfaces. Freshly extracted 364 bovine anterior teeth were selected as a adherents. 320 enamel specimens were divided into two groups(unetched group (1) and etched group (2) for testing the shear bond strength, 40 specimens were used for the hardness testing, and 4 specimens of rest were to observe the resin-tag formation into etched enamel surfaces. All surfaces of enamel specimens were polished with 320~1500 SiC paper under continuous running water. In Group (1), 100 enamel specimens were polished and unetched. 220 polished enamel specimens in Group (2) were etched with 37 % phosphoric acid solution for 60 seconds, washed with water for 20 seconds, and dried with a light air pressure for 60 seconds. Three kinds of dentin bonding agents(Gluma, Prisma, Scotchbond 2) were evaluated the effect on the bond strength to conditioned enamel surfaces. Shear bond strengths were measured on the three cases such as a coating of primer only, a coating of sealer only, and a sequential coating of primer and sealer to acid etched enamel surfaces were compared with the bond strengths measured by the coating of enamel bonding agent followed by the bonding of composite resin (Photo clearfil bright, Kuraray, Japan) to unetched and acid etched enamel surfaces. In addition, the hardness tested on the adhesive fractured surface between composite resin enamel as a mean of evaluation of a factor whether the mechanical bond strengths were affected and the penetration of dentin bonding agents into etched enamel surfaces was also observed. Bond strengths were measured using the method of shear bond strength by a universal testing machine (Instron-4467, USA), statistical test were applied to the results using a one way analysis variance(ANOVA), and hardness was measured by the Vicker's Hardness Tester(MHT-i, Matsuzawa, Japan) and the penetration of the resins were observed by the SEM (Hitachi, S-2300, Japan). The following conclusions were drawn; 1. Enamel bonding agent showed to affect the improvement of bond strength of composite resin to enamel surface both unetched and etched. 2. Dentin bonding agents could be resulted in increase of bond strength to unetched enamel surface, but there were no statistical significances. 3. Bond strengths to etched enamel surface were significantly decreased with a coating of dentin primer only. 4. Coating of sealer only and coating of primer and sealer noticed the similar bond strengths of composite resin to etched enamel using the enamel bonding agents. 5. The applying method proved to be more effective than the kinds of dentin bonding agents on the bond strength of composite resin to etched enamel than the kind of dentin. 6. Vicker's hardness numbers of dentin bonding agents were lower than that of composite resin, but the degree of penetration of dentin bonding agents into etched enamel surfaces was excellent.

  • PDF

Studies on Finshing of Silk Fabric with Urea Formaldehyde Resin. (견직물에 대한 요소수지가공에 관한 연구)

  • 유영철
    • Journal of Sericultural and Entomological Science
    • /
    • v.27 no.2
    • /
    • pp.47-53
    • /
    • 1985
  • The studies on the reaction of Urea-Formaldehyde(UF) resin with silk fabric were studied, and the final results summarized as below; 1. The pH and UF molar ratio for preparing liquid resin was found at pH 4-5 and UF molar ration 1:2 and above. 2. The weight gains were increased with respect to increase in concentration of UF resin solution, while moisture regains were decreased. 3. The weight gains were significant high in case of wet pick up 70%. 4. The weight gains were increased with respect to increase in curing temperature and the amount of catalyst((NH4)2SO4) found was 2.5% on the weight of Dimethylol urea and Hydrochloric acid was 1%, Tartaric acid was 10%. 5. The effect of different catalyst on wash fastness of UF resin was good where as in case of acidic catalyst was significantly high. 6. The weight gains with different catalyst was high where as in case of potential acid catalyst was significantly high. 7. The crease recovery are increased with the increase of the weight gain of silk fabric and also stiffness are increased.

  • PDF

Effect of phytic acid as an endodontic chelator on resin adhesion to sodium hypochlorite-treated dentin

  • Mohannad Nassar;Noriko Hiraishi;Md. Sofiqul Islam;Maria JRH. Romero;Masayuki Otsuki;Junji Tagami
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.44.1-44.9
    • /
    • 2020
  • Objectives: Phytic acid (IP6), a naturally occurring agent, has been previously reported as a potential alternative to ethylenediaminetetraacetic acid (EDTA). However, its effect on adhesion to sodium hypochlorite (NaOCl)-treated dentin and its interactions with NaOCl have not been previously reported. Thus, in this study, the effects of IP6 on resin adhesion to NaOCl-treated dentin and the failure mode were investigated and the interactions between the used agents were analyzed. Materials and Methods: Micro-tensile bond strength (µTBS) testing was performed until failure on dentin treated with either distilled water (control), 5% NaOCl, or 5% NaOCl followed with chelators: 17% EDTA for 1 minute or 1% IP6 for 30 seconds or 1 minute. The failed specimens were assessed under a scanning electron microscope. The reaction of NaOCl with EDTA or IP6 was analyzed in terms of temperature, pH, effervescence, and chlorine odor, and the effects of the resulting mixtures on the color of a stained paper were recorded. Results: The µTBS values of the control and NaOCl with chelator groups were not significantly different, but were all significantly higher than that of the group treated with NaOCl only. In the failure analysis, a distinctive feature was the presence of resin tags in samples conditioned with IP6 after treatment with NaOCl. The reaction of 1% IP6 with 5% NaOCl was less aggressive than the reaction of the latter with 17% EDTA. Conclusions: IP6 reversed the adverse effects of NaOCl on resin-dentin adhesion without the chlorine-depleting effect of EDTA.

Optimization of Extraction and Purification of Phytic Acid from Defatted Rice Bran (탈지미강으로부터 Phytic Acid의 추출과 정제의 최적화)

  • Choi, Moon Sil;Han, Bok Kyung;Choi, Hyuk Joon;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.276-281
    • /
    • 2011
  • The optimum condition for the extraction and purification processes of phytic acid from defatted rice bran was examined. The phytic acid was efficiently extracted when the defatted rice bran was treated with 10 volumes of 0.5% HCl for 1 hr. For the neutralization of acid-treated extract, 0.5% NaOH was the most acceptable. To purify phytic acid, Diaion HP20 resin was used to remove impurities from the extract. The flow-through was then loaded onto ion exchange columns packed with various resins and among them, Amberlite IRA-416 resin showed highest recovery yield. When the phytic acid was absorbed onto Amberlite IRA-416 resin and then eluted with 0.5% NaOH, 89% of applied phytic acid was eluted. Most proteins were removed from the purified phytic acid and total protein content of the phytic acid was 0.14%(w/w).

Kinetics and Equilibrium Isotherm Studies for the Aqueous Lithium Recovery by Various Type Ion Exchange Resins

  • Won, Yong Sun;You, Hae-na;Lee, Min-Gyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.498-503
    • /
    • 2016
  • The characteristics of aqueous lithium recovery by ion exchange were studied using three commercial cation exchange resins: CMP28 (porous type strong acid exchange resin), SCR-B (gel type strong acid exchange resin) and WK60L (porous type weak acid exchange resin). CMP28 was the most effective material for aqueous lithium recovery; its performance was even enhanced by modifying the cation with $K^+$. A comparison to $Na^+$ and $H^+$ form resins demonstrated that the performance enhancement is reciprocally related to the electronegativity of the cation form. Further kinetic and equilibrium isotherm studies with the $K^+$ form CMP28 showed that aqueous lithium recovery by ion exchange was well fitted with the pseudo-second-order rate equation and the Langmuir isotherm. The maximum ion exchange capacity of aqueous lithium recovery was found to be 14.28 mg/g and the optimal pH was in the region of 4-10.

Facile Synthetic Route to Ascorbic Acid-Dipeptide Conjugate via N-Terminal Activation of Peptide on Resin Support

  • Yang, Jin-Kyoung;Kwak, Seon-Yeong;Jeon, Su-Ji;Kim, Hye-In;Kim, Jong-Ho;Lee, Yoon-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2381-2384
    • /
    • 2014
  • A solid-phase synthetic approach is reported for the synthesis of an ascorbic acid (ASA)-dipeptide conjugate that exhibited enhanced antioxidant activity. The N-terminal amino group of dipeptide (Ala-Ala) on a resin support was first activated by 1,1'-carbonyldiimidazole (CDI), and then reacted with an ASA derivative. The addition of a base, triethylamine (TEA), promoted nucleophilic acylation of ASA derivative and yielded a desired product (ASA-Ala-Ala) with enhanced purity, when cleaved from the resin. Compared to the approach where a C3 hydroxyl group of ASA was first activated with CDI and then reacted with the amino group of dipeptide on the resin, this new approach allowed a significant reduction of a total reaction time from 120 h to 8 h at $25^{\circ}C$. As-prepared ASA-dipeptide conjugate (ASA-Ala-Ala) showed improved antioxidant activity compared to ASA.

Effect of dentin pretreatment and curing mode on the microtensile bond strength of self-adhesive resin cements

  • Youm, Seung-Hyun;Jung, Kyoung-Hwa;Son, Sung-Ae;Kwon, Yong-Hoon;Park, Jeong-Kil
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.317-322
    • /
    • 2015
  • PURPOSE. The aim was to evaluate the effect of curing mode and different dentin surface pretreatment on microtensile bond strength (${\mu}TBS$) of self-adhesive resin cements. MATERIALS AND METHODS. Thirty-six extracted human permanent molars were sectioned horizontally exposing flat dentin surface. The teeth were divided into 12 groups (3 teeth/group) according to the dentin surface pretreatment methods (control, 18% EDTA, 10% Polyacrylic acid) and curing mode (self-curing vs. light-curing) of cement. After pretreatment, composite resin blocks were cemented with the following: (a) G-CEM LinkAce; (b) RelyX U200, followed by either self-curing or light-curing. After storage, the teeth were sectioned and ${\mu}TBS$ test was performed using a microtensile testing machine. The data was statistically analyzed using one-way ANOVA, Student T-test and Scheffe's post-hoc test at P<.05 level. RESULTS. For G-CEM LinkAce cement groups, polyacrylic acid pretreatment showed the highest ${\mu}TBS$ in the self-cured group. In the light-cured group, no significant improvements were observed according to the dentin surface pretreatment. There were no significant differences between curing modes. Both dentin surface pretreatment methods helped to increase the ${\mu}TBS$ of RelyX U200 resin cement significantly and degree of pretreatment effect was similar. No significant differences were found regarding curing modes except control groups. In the comparisons of two self-adhesive resin cements, all groups within the same pretreatment and curing mode were significantly different excluding self-cured control groups. CONCLUSION. Selecting RelyX U200 used in this study and application of dentin surface pretreatment with EDTA and polyacrylic acid might be recommended to enhance the bond strength of cement to dentin.

Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

  • Kursoglu, Pinar;Karagoz Motro, Pelin Fatma;Yurdaguven, Haktan
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • PURPOSE. To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS. Fifty-five ceramic blocks ($5mm{\times}5mm{\times}2mm$) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (${\alpha}$=0.05). RESULTS. Adhesion was significantly stronger in Group 2 ($3.88{\pm}1.94$ MPa) and Group 3 ($3.65{\pm}1.87$ MPa) than in Control group ($1.95{\pm}1.06$ MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 ($3.59{\pm}1.19$ MPa) and Control group. Shear bond strength was highest in Group 1 ($8.42{\pm}1.86$ MPa; P<.01). CONCLUSION. Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique.

Synthesis and Characterization of Acrylic-Modified Water-Reducible Alkyd Resin 2. Modification by MA and TMPTA Graft Copolymerization (수용성 아크릴 변성 알키드 수지의 합성과 물성 2. MA 및 TMPTA 공중합체에 의한 변성)

  • Cho, Young-Ho;Kang, Ki-Joon;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.698-705
    • /
    • 1994
  • The basic medium oil modified alkyd resin was synthesized from linseed oil fatty acid(LOFA), phthalic anhydride(PAA), maleic anhydride(MA) and trimethylol propane(TMP) by condensation polymerization at $230^{\circ}C$. MA/TMPTA modified water-reducible alkyd resins were synthesized with TMPTA graft copolymerization onto the basic resin at $180^{\circ}C$. Acid value of the resin was controlled by the addition amount of MA and N,N-dimethylethanol amine(DMEA) was used as a neutralizing agent to prepare of the water-reducible alkyd resin. The effect of TMPTA on the graft copolymerization of the resin was studied by measuring molecular weight glass transition temperature(Tg), viscosity, graft efficiency, and gel contents of melanin cured film. Heat resistance, UV resistance and water resistance of cured film of MA/TMPTA modified resin was compared to those of TMA/TMPTA modified alkyd resin. The molecular weight, viscosity gel contents and graft efficiency of water reducible alkyd resin were increased according to the TMPTA graft copolymerization, but Tg was decreased. The viscosity was lower when the solid contents reached 40% than that of 30% content and also and also became lower with the extent of neutralization ratio, The heat resistance, UV resistance and water resistance of the MA/TMPTA modified alkyd resis were better than those of TMA/TMPTA modified alkyd resin but the storage stability of the TMA/TMPTA alkyd resis was better than that of MA/TMPTA modified alkyd resin.

  • PDF

Treatment of Simulated Soil Decontamination Waste Solution by Ferrocyanide-Anion Exchange Resin Beads (Ferrocyanide-음이온 교환수지에 의한 모의 토양제염 폐액 처리)

  • Won Hui Jun;Kim Min Gil;Kim Gye Nam;Jung Chong Hun;Park Jin Ho;Oh Won Zin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2005
  • Preparation of ferrocyanide-anion exchange resin and adsorption test of the prepared resin on the Cs$^{+}$$ion were performed. Adsorption capability of the prepared resin on the Cs$^{+}$ion in the simulated citric acid based soil decontamination waste solution was 4 times greater than that of the commercial cation exchange resin. Adsorption equilibrium of the prepared resin on the Cs$^{+}$ion reached within 360 minutes. Adsorption capability on the Cs$^{+}$ion became to decrease above the necessary Co$^{2+}$ion concentration in the experimental range. Recycling test of the spent ion exchange resin by the successive application of hydrogen peroxide and hydrazine was also performed. It was found that desorption of Cs$^{+}$ion from the resin occurred to satisfy the electroneutrality condition without any degradation of the resin.

  • PDF