• Title/Summary/Keyword: residual motion

Search Result 237, Processing Time 0.025 seconds

On the influence of strong-ground motion duration on residual displacement demands

  • Ruiz-Garcia, Jorge
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.327-344
    • /
    • 2010
  • This paper summarizes results of a comprehensive analytical study aimed at evaluating the influence of strong ground motion duration on residual displacement demands of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. For that purpose, two sets of 20 earthquake ground motions representative of short-duration and long-duration records were considered in this investigation. While the influence of strong ground motion duration was evaluated through constant-strength residual displacement ratios, $C_r$, computed from the nonlinear response of elastoplastic SDOF systems, its effect on the amplitude and height-wise distribution of residual drift demands in MDOF systems was studied from the response of three one-bay two-dimensional generic frame models. In this investigation, an inelastic ground motion intensity measure was employed to scale each record, which allowed reducing the record-to-record variability in the estimation of residual drift demands. From the results obtained in this study, it was found that long strong-motion duration records might trigger larger median $C_r$ ratios for SDOF systems having short-to-medium period of vibration than short strong-motion duration records. However, taking into account the large record-to-record variability of $C_r$, it was found that strong motion duration might not be statistically significant for most of the combinations of period of vibration and levels of lateral strength considered in this study. In addition, strong motion duration does not have a significant influence on the amplitude of peak residual drift demands in MDOF systems, but records having long strong-motion duration tend to increase residual drift demands in the upper stories of long-period generic frames.

Zero Placement of the Asymmetric S-curve Profile to Minimize the Residual Vibration (잔류진동 저감을 위한 비대칭 S-curve 프로파일의 영점 배치법)

  • Ha, Chang-Wan;Rew, Keun-Ho;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.308-313
    • /
    • 2012
  • Robust tuning rules of the motion profile are proposed to minimize the residual vibration. For asymmetric S-curve profile, tuning rules are analytically formulated using Laplace-domain approach. When the system modeling is known exactly, by placing a single zero of the motion profile on the pole of the system, the residual vibration can be perfectly eliminated under undamped system. However, if there are some amounts of the modeling errors, the residual vibration significantly increases. To track this issue, the robust tuning rules against modeling error are discussed. One of the proposed robust tuning rules is placing the multiple zeros of the motion profile on the pole of the system, and the other is placing the zeros of the motion profile around the pole of the system. Thanks to the proposed robust tuning rules, motion profile becomes more robust to modeling errors while minimizing the residual vibration. By simulation, the effectiveness of the proposed robust tuning rules is verified.

Object-oriented coder using block-based motion vectors and residual image compensation (블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기)

  • 조대성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF

A Theoretical Model for the Analysis of Residual Motion Artifacts in 4D CT Scans (이론적 모델을 이용한 4DCT에서의 Motion Artifact 분석)

  • Kim, Tae-Ho;Yoon, Jai-Woong;Kang, Seong-Hee;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • In this study, we quantify the residual motion artifact in 4D-CT scan using the dynamic lung phantom which could simulate respiratory target motion and suggest a simple one-dimension theoretical model to explain and characterize the source of motion artifacts in 4DCT scanning. We set-up regular 1D sine motion and adjusted three level of amplitude (10, 20, 30 mm) with fixed period (4s). The 4DCT scans are acquired in helical mode and phase information provided by the belt type respiratory monitoring system. The images were sorted into ten phase bins ranging from 0% to 90%. The reconstructed images were subsequently imported into the Treatment Planning System (CorePLAN, SC&J) for target delineation using a fixed contour window and dimensions of the three targets are measured along the direction of motion. Target dimension of each phase image have same changing trend. The error is minimum at 50% phase in all case (10, 20, 30 mm) and we found that ${\Delta}S$ (target dimension change) of 10, 20 and 30 mm amplitude were 0 (0%), 0.1 (5%), 0.1 (5%) cm respectively compare to the static image of target diameter (2 cm). while the error is maximum at 30% and 80% phase ${\Delta}S$ of 10, 20 and 30 mm amplitude were 0.2 (10%), 0.7 (35%), 0.9 (45%) cm respectively. Based on these result, we try to analysis the residual motion artifact in 4D-CT scan using a simple one-dimension theoretical model and also we developed a simulation program. Our results explain the effect of residual motion on each phase target displacement and also shown that residual motion artifact was affected that the target velocity at each phase. In this study, we focus on provides a more intuitive understanding about the residual motion artifact and try to explain the relationship motion parameters of the scanner, treatment couch and tumor. In conclusion, our results could help to decide the appropriate reconstruction phase and CT parameters which reduce the residual motion artifact in 4DCT.

A Study on the Development of Residual Sway Motion Control System for the Container Crane (컨테이너 크레인의 흔들림 방지장치 개발에 관한 연구)

  • 손유식;김영복
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.35-42
    • /
    • 2000
  • The sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. But in this paper, we introduce and synthesize a new type of swing motion control system. In this control system, a small auxiliary mass is installed on the spreader. And the actuator reacts against the auxiliary mass, applying intertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we apply the LMI approach and simultaneous optimization design method to design the anti-swing motion control system for the controlled plant. And the simulation result shows that the proposed control strategy is shown to be robust to disturbances like winds and initial sway motion.

  • PDF

Object-oriented coder using pyramid structure and local residual compensation (피라미드 구조 및 국부 오차 보상을 이용한 물체지향 부호화)

  • 조대성;박래홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3033-3045
    • /
    • 1996
  • In this paper, we propse an object-oriented coding method in low bit-rate channels using pyramid structure and residual image compensation. In the motion estimation step, global motion is estimated using a set of multiresolution images constructed in a pyramid structure. We split an input image into two regions based on the gradient value. Regions with larte motions obtain observation points at low resolution level to guarantee robustness to noise and to satisfy a motion constraint equation whereas regions with local motions such as eye, and lips get observation points at the original resolution level. Local motion variations and intesity variations of an image reconstructed by the golbal motion are compensated additionally by using the previous residual image component. Finally, the model failure (MF) region is compensated by the pyramid mapping of the previous displaced frame difference (DFD). Computer simulation results show that the proposed method gives better performance that the convnetional one in terms of the peak signal to noise ratio (PSNR), compression ratio (CR), and computational complexity.

  • PDF

A Study on Motion Acceleration-Deceleration Time to Suppress Residual Vibration of Robot (로봇 잔류 진동 저감을 위한 모션 가감속 시간 설계 연구)

  • Kang, Han Sol;Chung, Seong Youb;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • In this paper, we proposed a method to determine the acceleration/deceleration time of the motion for reducing the residual vibration caused by the resonance of the robot in the high-speed motion. The relationship between the acceleration/deceleration time and the residual vibration was discussed for the trapezoidal velocity profile by analyzing the time when the jerk happens. The natural frequency of the robot can be estimated in advance through the dynamics simulation. The simulation and experiment for both cases where the moving distance of the robot is long enough and the distance is short, are implemented in the 1-DOF linear robot. Simulation and experimental results show that when the acceleration/deceleration time is a multiple of the vibration period, the settling time and the amplitude of the residual vibration become less than when the time is not a multiple.

Identification of motion error sources in NC machine tools by a circular interpolation test (원호보간시험에 의한 수치제어 공작기계의 운동오차원인 진단에 관한 연구)

  • Hong, Seong-Wook;Shin, Young-Jae;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.126-137
    • /
    • 1993
  • This paper presents an efficient method for the identification of motion error sources in NC machine tools by making use of the circular interpolation test, which is often used in estimating the motion accuracy of NC machine tools. Mathematical formulae are described for motion errors due to various kinds of error sources. Two identification formulae are proposed: one is based on the frequency analysis and the other is formulated with the weithted residual method. Motion error signal is classified into two patterns, mean errors(mean of CW and CCW test signals from mean errors). The sources of the mean errors are identified by using the frequency analysis technique and the sources of the deviation errors by the weighted residual formulaltion. A menu driven, user oriented, computer program is written to realize the full steps of the proposed identificationprocedure. Then, the identification method is applied to two NC machine tools.

  • PDF

Residual Polar Motion excluding Chandler and Annual components

  • Na, Sung-Ho;Baek, Jeong-Ho;Kwak, Young-Hee;Yoo, Sung-Moon;Cho, Jung-Ho;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.22.1-22.1
    • /
    • 2011
  • Two dominant components of polar motion are the Chandler and the annual components. Recently, the existence of 500-day period component in the Earth's polar motion has been manifested. But its existence is not clear on Fourier spectrum. One cause of difficulty involved here is that the amplitudes of the two main components are slightly variable in time by certain amounts (Chandler: 0.15~0.28 arcsec, annual: 0.09~0.15 arcsec). A residual polar motion time series excluding the two main components for a time span between 1962 Jan and 2010 Nov from IERS C04 time series dataset was constructed by least square fitting. For faithful fitting, 43 time segments of 6.8 year length (each starts on January 1st of successive years) were separately acquired and later combined together. The period of dominant peak in the spectrum of this residual polar motion time series is 490 days. Next peaks have their periods as semi-annual, 300~330 days, ~560 days, 670 days, and 1360 days.

  • PDF

Progressive Residual Motion Estimation for Constructing Seamless Mosaics (이음매없는 모자이크 구성을 위한 단계적 잔여 움직임 추정)

  • Lee Cheong Woo;Choi Jae Gark;Lee Si-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.512-522
    • /
    • 2005
  • In this paper an algorithm of image alignments for constructing seamless mosaics is proposed. After the global alignment has been run, there may still be localized mis-registrations present in the mosaic. Due to mis-registrations, there may be seams in the mosaic, such as breaking, blurring, and doubling of lines. To solve this problem, we need an algorithm of residual motion estimation, which minimizes mis-registrations. In the conventional algorithms of residual motion estimation, computational powers are too heavy and estimators of camera parameters are additionally needed such as focal lengths. In the proposed algorithm, residual motion vectors are estimated with the adequate size of estimation and measurement windows and with adjustment of initial vectors according to the established priority. By construction of mosaics with the proposed algorithm, we demonstrate the removal of seams by mis-registrations.