• Title/Summary/Keyword: residual layer

Search Result 654, Processing Time 0.023 seconds

Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • 심재준;한근조;김태형;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF

Characteristics of damaged layer in high speed end milling (고속 엔드밀 가공에서 가공변질층의 특성)

  • 김동은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.326-331
    • /
    • 2000
  • In this study, residual stress was investigated experimentally to evaluate damaged layer in high-sped machining. In machining difficult-to-cut material, residual stress remaining in machined surface was mainly speared as compressive stress. The scale of this damaged layer depends upon cutting speed, feed per tooth and radial cutting depth. Damaged layer was measured by optical microscope. The micro-structure of damaged layer was a mixed maternsite and austenite. depth of damaged layer is increased with increasing of cutting temperature, cutting force and radial depth. On the other hand, that is slightly decreased with decreasing of cutting force. The increase of tool wear causes a shift of the maximum residual stress in machined surface layer.

  • PDF

Prediction of Residual Stress Distribution in Multi-Stacked Thin Film by Curvature Measurement and Iterative FEA

  • Choi Hyeon Chang;Park Jun Hyub
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1065-1071
    • /
    • 2005
  • In this study, residual stress distribution in multi-stacked film by MEMS (Micro-Electro Mechanical System) process is predicted using Finite Element method (FEM). We evelop a finite element program for residual stress analysis (RESA) in multi-stacked film. The RESA predicts the distribution of residual stress field in multi-stacked film. Curvatures of multi­stacked film and single layers which consist of the multi-stacked film are used as the input to the RESA. To measure those curvatures is easier than to measure a distribution of residual stress. To verify the RESA, mean stresses and stress gradients of single and multi layers are measured. The mean stresses are calculated from curvatures of deposited wafer by using Stoney's equation. The stress gradients are calculated from the vertical deflection at the end of cantilever beam. To measure the mean stress of each layer in multi-stacked film, we measure the curvature of wafer with the left film after etching layer by layer in multi-stacked film.

Thermal Deformation and Residual Stress Analysis of Lightweight Piezo-composite Curved Actuator (복합재료와 압전재료로 구성된 곡면형 작동기의 열변형 및 잔류응력 해석)

  • 정재한;박기훈;박훈철;윤광준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.126-129
    • /
    • 2001
  • LIPCA (LIghtweight Piezo-composite Curved Actuator) is an actuator device which is lighter than other conventional piezoelectric ceramic type actuator. LIPCA is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. LIPCA has curved shape like a typical THUNDER (thin-layer composite unimorph feroelectric driver and sensor), but it is lighter an than THUNDER. Since the curved shape of LIPCA is from the thermal deformation during the manufacturing process of unsymmetrically laminated lay-up structure, an analysis for the thermal deformation and residual stresses induced during the manufacturing process is very important for an optimal design to increase the performance of LIPCA. To investigate the thermal deformation behavior and the induced residual stresses of LIPCA at room temperature, the curvatures of LIPCA were measured and compared with those predicted from the analysis using the classical lamination theory. A methodology is being studied to find an optimal stacking sequence and geometry of LIPCA to have larger specific actuating displacement and higher force. The residual stresses induced during the cooling process of the piezo-composite actuators have been calculated. A lay-up geometry for the PZT ceramic layer to have compression stress in the geometrical principal direction has been designed.

  • PDF

Improving the Residual Stress Characteristics of the Metal Surface by Nd:YAG Laser Shock Peening (Nd:YAG 레이저 충격 피닝에 의한 금속표면의 잔류응력 특성 개선)

  • Yang, Se-Young;Choi, Seong-Dae;Jun, Jea-Mok;Gong, Byeong-Chae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.539-547
    • /
    • 2010
  • Laser shock peening is useful to improve fatigue characteristic of multiple number of metals and alloys. This process induces a compressive residual stress on the metal surface, and when tensile load is applied, growth of crack is delayed and which changes the characteristic of the metal surface. It is an innovative surface treatment technique for strengthening metals. Specimens of SM45C are used in this study. The effect of an inertial tamping layer on the residual stress field using laser shock peening setup and Nd:YAG laser power is evaluated. Residual stress distribution measured by X-ray diffraction. As a result of this study it can be presented that following condition of Nd:YAG laser power and inertial tamping layer parameters, compressive residual stress is generated on the surface of the SM45C. Results to experimental data indicate that laser shock peening has great potential as a means of improving the mechanical performance of the metal surface.

Numerical Analysis of Pressure and Temperature Effects on Residual Layer Formation in Thermal Nanoimprint Lithography

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. To successfully imprint a nanosized pattern with the thermal NIL, the process conditions such as temperature and pressure should be appropriately selected. This starts with a clear understanding of polymer material behavior during the thermal NIL process. In this paper, a filling process of the polymer resist into nanometer scale cavities during the thermal NIL at the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer. In the simulation, the filling process and the residual layer formation are numerically investigated. And the effects of pressure and temperature on NIL process, specially the residual layer formation are discussed.

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

A study on the surface integrity of machined surface layer in machining hardened STD11 steel (경화처리된 합금공구강의 절삭에서 가공 표면층의 표면성상에 관한 연구)

  • Noh, Sang-Lai;An, Sang-Ook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.153-160
    • /
    • 1994
  • In this study, residual stress and surface roughness were investigated experimentally to evaluate surface integrity on surface layer machined by CBN, ceramics and WC cutting tools. When machining difficult-to-cut material (hardened STD11 steel $H_{R}$C 60), residual stresses remaining in machined surface layer were mainly compressive. The increase of flank wear caused a shift of the compressive residual stress maximum to greater workpiece depths, but the changes did not penetrate the workpiece beneath a depth of 300 .mu. m. Surface roughness was influenced considerably by variations of the cutting speed and feed. In machining hard material, CBN and A1$_{2}$ $O_{3}$ ceramics cutting tool materials proved significantly superior to mixed ceramics A1$_{2}$ $O_{3}$-TiC and WC in evaluation of surface integrity.y.

  • PDF

Characteristic evaluation of microscopic precision in high speed machining (고속가공에서 미시적 정밀도의 특성 평가)

  • 김철희;김전하;강명창;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.352-357
    • /
    • 2001
  • In this study, residual stress was investigated to evaluate damaged layer in high speed machining through simulation. In machining steel(STDll), residual stress remaining in machined surface was mainly appeared as compressive stress. The scale of this damaged layer more depends on feed per tooth and radial depth than spindle speed. Damaged layer was measured by optical microscope and hardness method. The micro-structure of damaged layer was a martensite because of cutting force and cutting temperature. Thickness of damaged layer is increased with incresing of feed per tooth and radial depth.

  • PDF

A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$ Arc Welding (인공신경회로망을 이용한 탄산가스 아크 용접의 잔류응력 예측에 관한 연구)

  • 조용준;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.77-88
    • /
    • 1995
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO$_{2}$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a backpropagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the ailure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF