• Title/Summary/Keyword: residual generation

Search Result 245, Processing Time 0.033 seconds

Effect of Salt Concentration and Turbidity on the Inactivation of Artemia sp. in Electrolysis UV, Electrolysis+UV Processes (해수의 염 농도와 탁도가 전기, UV 및 전기+UV 공정의 Artemia sp. 불활성화에 미치는 영향)

  • Kim, Dong-Seng;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.291-301
    • /
    • 2019
  • This study was conducted to investigate the effect of salt concentration and turbidity on the inactivation of Artemia sp. by electrolysis, UV photolysis, electrolysis+UV process to treat ballast water in the presence of brackish water or muddy water caused by rainfall. The inactivation at different salt concentrations (30 g/L and 3 g/L) and turbidity levels (0, 156, 779 NTU) was compared. A decrease in salt concentration reduced RNO (OH radical generation index) degradation and TRO (Total Residual Oxidant) production, indicating that a longer electrolysis time is required to achieve a 100% inactivation rate in electrolysis process. In the UV process, the higher turbidity results in lower UV transmittance and lower inactivation efficiency of Artemia sp. Higher the turbidity resulted in lower ultraviolet transmittance in the UV process and lower inactivation efficiency of Artemia sp. A UV exposure time of over 30 seconds was required for 100% inactivation. Factors affecting inactivation efficiency of Artemia sp. in low salt concentration are in the order: electrolysis+UV > electrolysis > UV process. In the case of electrolysis+UV process, TRO is lower than the electrolysis process, but RNO is more decomposed, indicating that the OH radical has a greater effect on the inactivation effect. In low salt concentrations and high turbidity conditions, factors affecting Artemia sp. inactivation were in the order electrolysis > electrolysis+UV > UV process. When the salt concentration is low and the turbidity is high, the electrolysis process is affected by the salt concentration and the UV process is affected by turbidity. Therefore, the synergy due to the combination of the electrolysis process and the UV process was small, and the inactivation was lower than that of the single electrolysis process only affected by the salt concentration.

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics (플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰)

  • Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

Bleeding After Gastric Endoscopic Submucosal Dissection Focused on Management of Xa Inhibitors

  • Ono, Shoko;Ieko, Masahiro;Tanaka, Ikko;Shimoda, Yoshihiko;Ono, Masayoshi;Yamamoto, Keiko;Sakamoto, Naoya
    • Journal of Gastric Cancer
    • /
    • v.22 no.1
    • /
    • pp.47-55
    • /
    • 2022
  • Purpose: The use of direct oral Xa inhibitors (DXaIs) to prevent venothrombotic events is increasing. However, gastrointestinal bleeding, including that related to endoscopic resection, is a concern. In this study, we evaluated bleeding and coagulation times during the perioperative period of gastric endoscopic submucosal dissection (ESD). Materials and Methods: Patients who consecutively underwent gastric ESD from August 2016 to December 2018 were analyzed. Bleeding rates were compared among the 3 groups (antiplatelet, DXaIs, and control). DXaI administration was discontinued on the day of the procedure. Prothrombin time (PT), activated partial thromboplastin time, and the ratio of inhibited thrombin generation (RITG), which was based on dilute PT, were determined before and after ESD. Results: During the study period, 265 gastric ESDs were performed in 239 patients, where 23 and 50 patients received DXaIs and antiplatelets, respectively. Delayed bleeding occurred in 17 patients (7.4%) and 21 lesions (7.1%). The bleeding rate in the DXaI group was significantly higher than that in the other groups (30.4%, P<0.01), and the adjusted odds ratio of bleeding was 5.7 (95% confidence interval, 1.4-23.7; P=0.016). In patients using DXaIs, there was a significant (P=0.046) difference in the median RITG between bleeding cases (18.6%) and non-bleeding cases (3.8%). Conclusions: A one-day cessation of DXaIs was related to a high incidence of bleeding after gastric ESD, and monitoring of residual coagulation activity at trough levels might enable the predicted risk of delayed bleeding in patients using DXaIs.

A Study on the Prediction of Storage Life of Rolling Element Bearings for the Single-use Turbo Engine (일회성 터보엔진용 구름 베어링의 저장 수명 예측에 관한 연구)

  • Sun Je Kim;Dong Min Kim;Soon Ho Hong;Seong Ki Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.43-52
    • /
    • 2022
  • Operational reliability of the single-use turbo engine for guided weapons must be guaranteed even after long-term storage. Rolling element bearings have a great influence on the operational reliability of the turbo engine, however changes in micro dimensions of bearings by an oxide layers on rolling elements and raceways may cause failures after long-term storage. In this study, changes in dimensions of bearings were measured and roughness of rolling elements was used for estimating the storage life. Storage life estimation was performed via two kinds of methods, Weibayes method and random sample generation method. The results of two methods were compared and their characteristics were analyzed. This study will contribute to establish an efficient maintenance schedule for the single-use turbo engine.

Transverse variability of flow and sediment transport in estuaries with an estuarine dam

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.125-125
    • /
    • 2023
  • Estuarine dams are dams constructed in estuaries for reasons such as securing freshwater resources, controlling water levels, and hydroelectric power generation. These estuarine dams alter the flow of freshwater to the coastal ocean and the tidal properties of the estuaries which has implications for the estuaries' circulation and sediment transport. A previous study has analyzed the effect of estuarine dams on 1D (along-channel) circulation and sediment transport. However, the effect of estuarine dams on the transverse variability of along-channel and across-channel circulation and sediment transport has not been studied and is not known. In this study, a coupled hydrodynamic-sediment dynamic numerical model (COAWST) was used to analyze the transverse variability of along-channel and across-channel flow and sediment transport in estuaries with estuarine dams. The estuarine dam was found to change the 3D structure of circulation and sediment transport, and the result was found to depend on the estuarine type (i.e., strongly stratified (SS) or well-mixed (WM) estuary). The SS estuary had inflow in the channel and outflow over the shoals, consistent with estuarine circulation. Longer discharge interval reduced the estuarine circulation. The WM estuary had inflow over the shoals and outflow in the channel, consistent with tide-induced circulation. As the estuarine dam was located nearer to the estuary mouth, the tide-induced circulation was reduced and replaced with estuarine circulation. The lateral circualtion was the greatest in the tide-dominated estuaries. It was reduced and changed direction due to differential advection change as the dam was located nearer the mouth. Overall, the WM estuary transverse flow structure changed the most. Lateral sediment flux was important in all estuaries, particularly for transporting sediments to the tidal flats.

  • PDF

Localization Algorithms for Mobile Robots with Presence of Data Missing in a Wireless Communication Environment (무선통신 환경에서 데이터 손실 시 모바일 로봇의 측위 알고리즘)

  • Sin Kim;Sung Shin;Sung Hyun You
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.601-608
    • /
    • 2023
  • Mobile robots are widely used in industries because mobile robots perform tasks in various environments. In order to carry out tasks, determining the precise location of the robot in real-time is important due to the need for path generation and obstacle detection. In particular, when mobile robots autonomously navigate in indoor environments and carry out assigned tasks within pre-determined areas, highly precise positioning performance is required. However, mobile robots frequently experience data missing in wireless communication environments. The robots need to rely on predictive techniques to autonomously determine the mobile robot positions and continue performing mobile robot tasks. In this paper, we propose an extended Kalman filter-based algorithm to enhance the accuracy of mobile robot localization and address the issue of data missing. Trilateration algorithm relies on measurements taken at that moment, resulting in inaccurate localization performance. In contrast, the proposed algorithm uses residual values of predicted measurements in data missing environments, making precise mobile robot position estimation. We conducted simulations in terms of data missing to verify the superior performance of the proposed algorithm.

Damage Analysis of Train Rail Fishplate (전동차 선로 이음매 판의 파손 해석)

  • Seo-Hyun Yun;Byoung-Chul Choi;Ki-Hang Shin;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.341-347
    • /
    • 2023
  • The subway is one of the most common and important means of transportation in modern society. In order to use the subway safely, tracks are necessary, but trains are prone to derailment and collisions. In order for the train to run safely on the track, the fishplate that connects the line connection is used. The damaged railway was a fishplate for connecting subway lines used for 11 years, and damage analysis and countermeasures were presented. Beach marks were observed on both fracture surfaces, and striations appeared at the range of crack propagation. The damaged part is Cr carbide, which has a higher hardness than the base metal, and is judged to be embrittled and destroyed by fatigue. The SM50C fishplate was subjected to a cyclic stress of about 59% of the upper limit of tensile-compression fatigue limit, but inclusions were the cause of failure. In order to prevent fatigue failure of the SM50C steel fishplate, the occurrence of inclusions should be minimized and processed to have a homogeneous structure when manufacturing the fishplate. In addition, compressive residual stress is given through surface modification such as peening to control crack generation. It is necessary to minimize the change in shape that can become a stress concentration part along with accurate fastening of the bolt, and to design the stress distribution to be as uniform as possible.

Effect of Number of Shutdown on the Decrease of Performance in PEM Water Electrolysis (PEM 수전해에서 정지횟수가 성능 감소에 미치는 영향)

  • Cheunho Chu;Jongwon Yang;Ilchai Na;Yoonjin Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.202-207
    • /
    • 2023
  • In the case of driving water electrolysis by receiving surplus electricity from solar and wind power generation, operation and stopping must be repeated according to weather fluctuations. When the PEMWE(Polymer Electrolyte Membrane Water Electrolysis) is driven and stopped, the PEM fuel cell is in the same state as the PEM fuel cell due to the residual hydrogen and oxygen, and the high potential of the water electrolysis formed during operation is highly likely to cause degradation of the electrode and membrane even during stopping. In this study, in order to check how much degradation of the electrode and membrane progresses during the repeated driving/shutdown process of PEM water electrolysis, the performance decrease was measured by changing the number of driving/shutdown for 144 hours. Changes in electrode catalyst active area, hydrogen permeability and fluorine emision rate of membranes were analyzed to measure changes in the properties of electrodes and polymer membranes. Overall, the PEMWE performance decreased as the number of stops increased. When stopped 5 times in 144 hours, the IrOx catalyst activity decreased by more than 30%, and the hydrogen permeability increased by 80%, confirming that both the electrode and the membrane were deteriorated.

A Study on the Evaluation of DCSG Steam Efficiency of Oil Sand Plants for Underground Resources Development (지하자원개발을 위한 오일샌드플랜트의 DCSG 증기생산효율 평가에 관한 연구)

  • Young Bae Kim;Kijin Jeong;Woohyun Jung;Seok Woo Chung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • Steam assisted gravity drainage(SAGD) is a process that drills well in the underground oil sands layer, injects hightemperature steam, lowers the viscosity of buried bitumen, and recovers it to the ground. Recently, direct contact steam generator(DCSG) is being developed to maximize steam efficiency for SAGD process. The DCSG requires high technology to achieve pressurized combustion and steam generation in accordance with underground pressurized conditions. Therefore, it is necessary to develop a combustion technology that can control the heat load and exhaust gas composition. In this study, process analysis of high-pressurized DCSG was conducted to apply oxygen enrichment technology in which nitrogen of the air was partially removed for increasing steam production and reducing fuel consumption. As the process analysis conditions, methane as the fuel and normal air or oxygen enriched air as the oxidizing agent were applied to high-pressurized DCSG process model. A simple combustion reaction program was used to calculate the property variations for combustion temperature, steam ratio and residual heat in exhaust gas. As a major results, the steam production efficiency of DCSG using the pure oxygen was about 6% higher than that of the normal air due to the reducing nitrogen in the air. The results of this study will be used as operating data to test the demonstration device.

The effect of subjective perception on preference for the universality of the welfare system: the approach using instrument variables (개인의 주관적 인식이 복지제도의 보편성에 대한 선호에 미치는 효과: 도구변수를 활용한 접근법)

  • Kim, Sa-Hyun
    • Korean Journal of Social Welfare Studies
    • /
    • v.41 no.3
    • /
    • pp.213-239
    • /
    • 2010
  • The purpose of this research is to explore the explanatory factors of preference for the universality of the welfare system at the time of expanding the welfare system. In particular, considering endogenous problem that may occur in the process of analyzing the causal relationship between subjective perception and preference for welfare policy, the 2SLS regression analysis using instrument variables was attempted in this research. The key findings of this research were as follow. First, the groups who are opposed to the welfare state expansion, for example high income earners, low risk group, and employer/self-employer, prefer the more universal welfare systems. Second, the negative perception of welfare policy and recipients, which is stronger in older generation who experienced a much longer period of industrializaion, have a negative effect on preference for the universal welfare system. Last, we find that the endogenous problem arise in this research and distort the estimated regression coefficients. Therefore, subsequent studies must be mindful of this problem when they explain attitudes with attitudes.