• Title/Summary/Keyword: residual analysis

Search Result 3,246, Processing Time 0.026 seconds

Influence of Inclined Holes in Measurement of Residual Stress by the Hole Drilling Method

  • Kim, Cheol;Yang, Won-Ho;Heo, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1647-1654
    • /
    • 2001
  • The hole drilling method is widely used in measuring residual stress in surfaces. In this method, the inclination of holes is one of the sources of error. This paper presents a finite element analysis of the influence of inclined holes on the uniaxial residual stress field. The error in stress has been found to increase proportionally to the correct inclined angle of the hole. The correction equations by which one may easily obtain the residual stress, taking account of the inclined angle and direction, have been derived. The error of stress due to the inclined hole has been reduced to around 1% using the correction equations.

  • PDF

Finite element modeling of rolled steel shapes subjected to weak axis bending

  • Saliba, Najib G.;Tawk, Issam;Gergess, Antoine N.
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.161-173
    • /
    • 2018
  • Point bending is often used for cambering and curving structural steel girders. An analytical solution, applicable in the elasto-plastic range only, that relates applied loads to the desired curve was recently developed for inducing horizontal curves using four-point bending. This solution does not account for initial residual stresses and geometric imperfections built-in hot-rolled sections. This paper presents results from a full-scale test on a hot-rolled steel section curved using four-point bending. In parallel, a numerical analysis, accounting for both initial geometric imperfections and initial residual stresses, was carried out. The models were validated against the experimental results and a good agreement for lateral offset and for strain in the elasto-plastic and post-plastic ranges was achieved. The results show that the effect of initial residual stresses on deformation and strain is minimal. Finally, residual stresses due to cold bending calculated from the numerical analysis were assessed and a revised stress value for the service load design of the curved girder is proposed.

Evaluation of Welding Residual Stress Characteristics of a Surge Line Elbow (밀림곡관 맞대기 용접부의 잔류응력 특성 평가)

  • Han, Chang-Gi;Chang, Yoon-Suk;Kim, Maan-Won;Lee, Kyoung-Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Even though a lot of efforts have been devoted to evaluate welding residual stress characteristics of nuclear components, from the view point of accuracy, there are still some arguments in application of engineering estimation schemes. In this paper, three-dimensional finite element analyses (FEA) were carried out to predict residual stress distributions in butt welds of a typical surge line piping. Mesh optimization was conducted and subsequent analysis results such as the axial and hoop stress components along the weld center line and inner wall. Moreover, alternative evaluation was conducted by using three representative equations and their results were compared to those of FEA. Thereby, key parameters affecting to temperature profiles and residual stress distributions were derived as well as an optimum engineering estimation scheme was recommended.

Analysis of Thermal Residual Stress in Composite Patches (복합재 패춰의 열잔류응력 해석)

  • 김위대;김난호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.63-66
    • /
    • 2000
  • This research addresses study on thermal residual stress of a composite patch repair of the edge cracked aluminium panel of aging aircraft. Composite patch repair is an efficient and economical technique to improve the damage tolerance of cracked metallic structures. These are thermal residual stresses due to the mismatch of coefficient of thermal expansion, and these are affected by the curing cycle of patch specimen. In this study, three curing cycles were selected for F.E. analysis. This study features the effect on composite patch and aluminum by thermal residual stress during crack propagation in aluminum plate.

  • PDF

Fatigue Design of Spot Welded Lap Joint Considered Residual Stress (잔류응력을 고려한 점용접이음재의 피로설계)

  • Son, Il-Seon;Bae, Dong-Ho;Hong, Jeong-Gyun;Lee, Beom-No
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.743-751
    • /
    • 2000
  • Because welding residual stress is formidable result in electric resistance spot welding process, and it detrimentally affect to fatigue crack initiation and growth at nugget edge of spot welded la p joints, it should be considered in fatigue analysis. Thus, accurate prediction of residual stress is very important. In this study, nonlinear finite element analysis on welding residual stress generated in process of the spot welding was conducted, and their results were compared with experimental data measured by X-ray diffraction method. By using their results, the maximum principal stress considered welding residual stress at nugget edge of the spot welded lap joint subjected to tension-shear load was calculated by superposition method. And, the $\Delta$P- $N_f$ relations obtained through fatigue, tests on the IB-type spot welded lap joints was systematically rearranged with the maximum principal stress considered welding residual stress. From the results, it was found th2at fatigue strength of the IB-type spot welded lap joints could be systematically and more reasonably rearranged by the maximum principal stress($\sigma$1max-res considered welding residual stress at nugget edge of the spot welding point.

Numerical Modeling of the Transformation Temperature Effect on the Relaxation of Welding Residual Stress (용접 잔류응력 완화에 미치는 변태 온도의 영향에 관한 수치적 모델링)

  • Jang, Gyoung-Bok;Kang, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2552-2559
    • /
    • 2000
  • Most of ferrous b.c.c weld materials have martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is necessary to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions, i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. In this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis. In addition to, since the transformation temperature changes by the kind and control of alloying elements, the steel with many kinds of transformation temperature were selected and the effect of transformation on stress releasement was investigated by the numerical procedures considering phase transformation.

Residual Stress in Welds of High Strength Steel( POSTEN60, POSTEN80) (고강도강(POSTEN60, POSTEN80) 용접접합부의 잔류응력)

  • Chang, Kyong Ho;Lee, Chin Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.519-528
    • /
    • 2004
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. And it is well known that volume expansion due to phase transformation could influence in the case of welding of high tensile strength steels on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. In this study, we investigated the effect of phase transformation on the relaxation of welding residual stress through experiment. And three-dimensional thermal elastic-plastic FEM analysis is conducted to reproduce the effect of phase transformation on the relaxation of welding residual stress. Also we carried out the analysis of welding residual stress in welds of similar or dissimilar steels considering the effect of residual stress relaxation due to phase transformation.

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

Computer Simulation for Residual Life Expectancy of a Container Crane Boom Structure (컨테이너 크레인 붐 구조물의 잔존수명 예측을 위한 컴퓨터 시뮬레이션)

  • Kim, Sang-Yeol;Bae, Hyung-Sub;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.119-129
    • /
    • 2007
  • The residual life expectancy of the container crane which has been operated more or less 39 years is examined carefully, especially on the boom structure. The basic load and load combination need to be considered for to analyse the boom structure. Various parts of container crane are modeled for to analyse stress, the deflection and the fatigue. Analysis results show that the boom is stable in the stress and deflection but the boom vertical member is over the fatigue life. The rail support beam and boom bottom chord are approximately near the fatigue life. Analysis results show that the residual life of rail support beam and the boom bottom chord would be 2.2 years and 6.8 years, respectively.

A Study on Residual Stress of SiC Whisker Reiforced AI Alloy/$ZrO_2$ Joints (SiC 휘스커강화 금속복합재료와 지르코니아 접합체의 잔류응력 해석에 관한 연구)

  • 주재황;박명균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.18-26
    • /
    • 1996
  • A two dimensional thermo elasto-plastic finite element stress analysis was performed to study residual stress distributions in AI composites reinforced by SiC whisker and $ZrO_2$ ceramic joints. The influences on the residual stress distributions due to the difference of the reinforcement volume fraction and interlayer material property were investigated. Specifically, stress distributions between AI interlayer material property were investigated. Specifically, stress distributions between AI interlayer and $ZrO_2$ ceramic and between the AI interlayer and AI composite were computationally analzed.

  • PDF