• Title/Summary/Keyword: reservoir level

Search Result 556, Processing Time 0.022 seconds

A Study on the Verification of water level criteria for forecasting system of reservoir failure (저수지 붕괴예보 시스템의 수위기준 검증 연구)

  • Lee, Baeg;Choi, Byounghan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.51-55
    • /
    • 2019
  • The loss of safety for reservoirs brought about by climate change and facility aging leads to reservoir failures, which results in the loss of lives and property damage in downstream areas. Therefore, it is necessary to provide a Reservoir Failure Forecasting System for downstream residents to detect the early signs of failure (with sensors) in real-time and perform safety management to prevent and minimize possible damage. For the verification of established water level management criteria, 10 water level data up to reservoir capacity was selected. Weight factor and trend line were applied to dramatic increase section of water level in the 1 year period data. The results shows that water level criteria based on three even parts shows less than 7% of standard deviation and it is appropriate to verify management criteria.

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

Evaluation of flood control capacity of agricultural reservoirs during flood season (홍수기 농업용 저수지의 홍수조절용량의 평가)

  • Jang, Ik Geun;Lee, Jae Yong;Lee, Jeong Beom;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.69-75
    • /
    • 2014
  • We investigated flood control capacity of 484 agricultural reservoirs with storage capacity of over 1 million $m^3$ in South Korea. In general, agricultural reservoir secures flood control capacity by setting up limited water level during flood season from late June to mid-September. The flood control capacity of an agricultural reservoir during flood season can be divided into stable flood control capacity during non-flood season, stable flood control capacity associated with limited water level, and unstable flood control capacity associated with limited water level. In general, the flood control capacity significantly (P < 0.001) increased with reservoir capacity irrespective of type of spillway. The unstable flood control capacity accounted for about 20 % of reservoir capacity in the uncontrolled reservoirs. The study reservoirs showed flood control capacity of 0.60-65 billion (B) $m^3$ and stable flood control capacity of 0.43-47 B $m^3$, depending on the upper and lower limited water levels during the flood season. The stable flood control capacity of the gated reservoirs (0.29-0.33 B $m^3$) was about two times than that of reservoirs with uncontrolled spillways (0.14 B $m^3$). The ratios of stable flood control capacity to reservoir capacity for agricultural reservoirs range from 21 to 23 %, similar to that for Daecheong multipurpose dam. Moreover, the reservoirs with over 100 mm ratio of flood control capacity to watershed area accounted for 38 % of total gated reservoirs. The results indicate that many agricultural reservoirs may contribute to controlling flood in the small watersheds during the flood season.

Reservoir Tank Wireless Integrated Management using Information Filtering (정보 필터링을 이용한 저수조 무선 통합 관리)

  • Yu, Ki-Youp;Kouh, Hoon-Joon;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.787-791
    • /
    • 2009
  • In this paper, we proposed the reservoir tank wireless integrated management using information filtering for improving the water quality and on-line managing efforts of reservoir tanks. Reservoir tank level sensor works the pump sending the data from reservoir tank control to the wireless control on sensing water level. At this time, every kind data which happens in the water tank transmits the line transmission modem. The data to be received from the line transmission modem is stored at the database after we record the logs by each hour. The proposed method defined the context and environment of the reservoir tank and predicted the profited service according to the pump motion, the solar battery, the chemicals, the water level, the line, and the modem using information filtering. we plan to conduct the proposed method to verify the adequacy and the validity of reservoir tank wireless integrated management using the information filtering.

  • PDF

Safety Analysis of Reservoir Dikes in South Korea through the Interpretation of the Electrical Resistivity Data Considering Three-dimensional Structure (3차원 구조를 고려한 전기비저항 탐사자료 해석을 통한 국내 저수지 제체 안전성 분석)

  • Song, Sung-Ho;Yong, Hwan-Ho;Lee, Gyu-Sang;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Resistivity inversion result may be distorted if the seepage line fluctuation within central core with the change of reservoir water level as well as the conductivity of the reservoir water is not taken into consideration because the reservoir dike is composed of three-dimensional (3D) resistivity structure. Consequently, to accurately analyze the resistivity changes inside the reservoir dike according to the change of reservoir water level, 3D electrical resistivity modeling for the 2D survey line considering topography and physical properties of dam components was carried out. In addition, 2D inversion was performed with the simulated 2D resistivity data for a given 3D model in order to compare it with the inversion result of real field data. For 283 reservoirs in Korea, 2D inversion results for the simulated 2D data and field 2D resistivity data were compared. Finally, the reservoirs with an inversion ratio of 50% or less were selected as reservoirs that require further precise investigation.

Improvement to Optimum Equipment Model of Agricultural Reservoir Considering Land Mark (랜드마크를 고려한 농업용저수지 최적정비모델의 개선)

  • Kim, Jongbong;Park, So yeon;Jung, Namsu;Lee, Huimang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.63-69
    • /
    • 2020
  • Recently, the Yedang reservoir needs reflecting the demands of the public and administration, including change of reservoir status and paradigm shift of users, as well as planning programs to activate the area as a special health zone for tourism, leisure, recreation and experience at the local government level. Previous Optimum Equipment model (OEM) preferentially considers the creation of waterfront. This study shows the operation model for readjustment of water supply facilities according to the limit of the level of the beneficiaries. Results show the renovation cycle of Yedang tourist resort and the suspension bridge through developed model simulation. In addition to securing quantity for the supply of agricultural water and the function of water protection, the multi-function of the agricultural reservoir shall be re-evaluated to enhance the diverse availability of the agricultural reservoir. The county office should also boost various availability at various levels to revitalize the local economy, such as producing pleasant and safe places and offering safe food for people.

A Study of Reservoir Management System in Japan - Focus on Hyogo Prefecture - (일본 농업용 저수지 관리 체계에 관한 연구 - 효고현을 중심으로 -)

  • Park, Jin-Wook
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • The study aims to draw out implications regarding systematic reservoir management through analyzing the reservoir conservation activities and policies in Hyogo Prefecture which has the most agricultural reservoirs in Japan and similar agricultural form to that of Korea. The results are as follows. First, it turns out that consistency in policies and persistent drive are key to success. Since the late 1990s, the Hyogo Prefectural government has expanded the reservoir conservation policies, consistently trying to ellicit the multifunctionality of reservoir, and also has shown persistent drive toward the conservation policies through systematic process. Second, it is clear that the Prefectural government has shown a great degree of activeness. It established ordinances before acts were legislated by the central government. In addition, the Hyogo Prefectural government ran a supportive organization with its own funds. Third, the establishment of systematic enforcement system played a critical role. The efficiency in the policy enforcement derived from the dual conferences, Prefectural-level conference dealing with the related policies throughout the Prefecture, and local-level conference discussing policies based on regional characteristics.

Floristic Composition and Phytomass in the Drawdown Zone of the Soyangho Reservoir, Korea

  • Cho, Hyunsuk;Jin, Seung-Nam;Marrs, Rob H.;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.94-104
    • /
    • 2018
  • The Soyangho Reservoir in Korea has a large drawdown zone, with an annual maximum water level fluctuation of 37 m due to dam operations to maintain a stable water supply and control flooding, especially during the monsoon period. The floristic composition, distribution and biomass of the major plant communities in the drawdown zone of the Soyangho Reservoir were assessed in order to understand their responses to the wide water level fluctuation. Species richness of vascular plants was low, and species composition was dominated by herbaceous annuals. Principal coordinates analysis using both flora and environmental data identified slope angle and the distance from the dam as important factors determining floristic composition. The species richness was low in the steep drawdown zone close to the dam, where much of the soil surface was almost devoid of vegetation. In shallower slopes, distant from the dam plant communities composed of mainly annuals were found. The large fluctuation in water level exposed soil where these annuals could establish. An overall biomass of 122 t (metric tons) Dry Matter was estimated for the reservoir, containing ca 3.6 t N (nitrogen) and ca 0.3 t P (phosphorus); the role of the vegetation of the drawdown zone in carbon sequestration and water pollution were briefly discussed.

Reservoir Water Level Forecasting Using Machine Learning Models (기계학습모델을 이용한 저수지 수위 예측)

  • Seo, Youngmin;Choi, Eunhyuk;Yeo, Woonki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.97-110
    • /
    • 2017
  • This study investigates the efficiencies of machine learning models, including artificial neural network (ANN), generalized regression neural network (GRNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF), for reservoir water level forecasting in the Chungju Dam, South Korea. The models' efficiencies are assessed based on model efficiency indices and graphical comparison. The forecasting results of the models are dependent on lead times and the combination of input variables. For lead time t = 1 day, ANFIS1 and ANN6 models yield superior forecasting results to RF6 and GRNN6 models. For lead time t = 5 days, ANN1 and RF6 models produce better forecasting results than ANFIS1 and GRNN3 models. For lead time t = 10 days, ANN3 and RF1 models perform better than ANFIS3 and GRNN3 models. It is found that ANN model yields the best performance for all lead times, in terms of model efficiency and graphical comparison. These results indicate that the optimal combination of input variables and forecasting models depending on lead times should be applied in reservoir water level forecasting, instead of the single combination of input variables and forecasting models for all lead times.