• 제목/요약/키워드: reservoir heterogeneity

검색결과 17건 처리시간 0.025초

Development and application of inverse model for reservoir heterogeneity characterization using parallel genetic algorithm

  • Kwon Sun-Il;Huh Dae-Gee;Lee Won-Suk;Kim Hyun-Tae;Kim Se-Joon;Sung Won-Mo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.719-722
    • /
    • 2003
  • This paper presents the development of reservoir characterization model equipped with parallelized genetic algorithm, and its application for a heterogeneous reservoir system with integration of the well data and multi-phase production data. A parallel processing method performed by PC-cluster was applied to the developed model in order to reduce time for an inverse calculation. By utilizing the developed model, we performed the inverse calculation with the production data obtained from three layered reservoir system to estimate porosity and permeability distribution. As a result, the pressures observed at well almost identical to those calculated by the developed model. Also, it was confirmed that parallel processing could be applied for reservoir characterization study efficiently.

  • PDF

Significance of Modern Analog Studies for Exploration and Development of Oil Sand (오일샌드 탐사 및 개발을 위한 현생유사퇴적환경 연구의 중요성)

  • Choi, Kyung-Sik
    • The Korean Journal of Petroleum Geology
    • /
    • 제14권1호
    • /
    • pp.12-20
    • /
    • 2008
  • Oil sands in Canada are representative example of unconventional resources whose reserve estimates are as large as those in Saudi Arabia. Typical reservoir rocks of oil sands consist of channel-related deposits formed in a tide-dominated depositional setting. The tidal deposits are commonly characterized by spatially complicated and heterogeneous properties. Successful engineering methods to develop oil sands require in-depth understanding in the spatial distribution of reservoir properties. Geological model for oil sand reservoir characterization can be built on the basis of comparative studies of ancient and modem analogues. In particular, modern analogue studies become increasingly indispensable, since they provide better understanding in the reservoir-rock forming process and more importantly in the external mechanism responsible for the reservoir heterogeneity. Tide-dominated environment along the west coast of Korea is considered as one of the most excellent modem analogues of oil-sand forming depositional environment. Korean tidal environment provides insights on the origin of mud breccia, facies and stratigraphic architecture which are key issues to the characterization of oil sand reservoirs.

  • PDF

Application of EFDC Model to an Agricultural Reservoir for Assessing the Effect of Point Source Bypassing (농업용 저수지의 점오염원 바이패스 효과 평가를 위한 EFDC 모델의 적용)

  • Kim, Dong Min;Park, Hyung Seok;Chung, Se Woong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제58권6호
    • /
    • pp.9-21
    • /
    • 2016
  • Agricultural reservoirs in Korea have been recognized as an emerging resource for recreational and cultural activities for residents. However, most of the reservoirs are eutrophic and showing high level of contamination with nuisance algal bloom and offensive odor during the summer. For better management and restoration of the reservoirs' water quality, scientific modeling approaches could be used to diagnose the problems and evaluate the efficacy of alternative control measures. The objectives of this study were to validate the performance of a three-dimensional (3D) hydrodynamic and water quality model (Environmental Fluid Dynamics Code, EFDC) for a eutrophic agricultural reservoir and assess the effect of bypassing of the effluent from a wastewater treatment plant on the reservoir water quality. The 3D model successfully simulated the temporal variations of water temperature, DO, TOC, nitrogen and phosphorus species and Chl-a observed in 2014 and also captured their spatial heterogeneity in the reservoir. The simulation results indicated that the point source bypassing may reduce the T-N and T-P concentrations of the reservoir by 6.6 ~ 8.2 %, and 1.7 ~ 16.8 %, respectively. The bypassing, however, showed a marginal effect on the control of TOC due to the increased algal biomass associated with the increased water retention time after bypassing as well as the lower TOC level of the effluent compared to the ambient reservoir water.

The Analysis for the Effect of Effective Compressibility on Oil Recovery in Polymer Flooded Heterogeneous Reservoir (폴리머 공법 적용 불균질 저류층에서의 유효 압축률이 오일생산에 미치는 영향 분석)

  • Baek, Soohyun;Jung, Woodong;Sung, Wonmo;Seo, Junwoo
    • Economic and Environmental Geology
    • /
    • 제47권3호
    • /
    • pp.247-254
    • /
    • 2014
  • The compressibility of fracture in naturally fractured reservoir is larger than the compressibility of matrix in rock, although the compressibility of a typical rock is very small. The effective compressibility including the fracture compressibility should be considered to predict oil recovery correctly. It is hard to quantify changes of fracture aperture and pore volume in reservoir without the effective compressibility. In this study, oil recovery is analyzed by commercial simulator concerning the fracture compressibility based on fracture properties. We found that the effective compressibility affects oil recovery with change of polymer flooding factors such as polymer molar weight, concentration and injection rate. The estimated cumulative oil production is smaller with the effective compressibility than without it. Also, bottomhole pressure decreases rapidly without considering effective fracture compressibility.

Long-term Water Quality Fluctuations in Daechung Reservoir and the Limiting Nutrient Evaluations Using In Situ Enclosure Nutrient Enrichment Bioassays (NEBs) (대청호에서 장기간 수질변동 및 인위적 Enclosure 영양염 투여실험에 따른 제한 영양염류 평가)

  • Park, Hyang-Mi;An, Kwang-Guk
    • Journal of Korean Society on Water Environment
    • /
    • 제28권4호
    • /
    • pp.551-560
    • /
    • 2012
  • The objectives of this study were to elucidate spatio-temporal heterogeneity of water chemistry and develop empirical models using trophic variables in Daechung Reservoir during 2005-2010 along with in situ tests of nutrient enrichment bioassays (NEB). The relations of water quality parameters in regard to precipitation showed that seasonal and interannual fluctuations of biological oxygen demand (BOD), total nitrogen (TN) and pH were minor, whereas conductivity, suspended solids (SS), and total phosphorus (TP) were largely varied in response to the magnitude of rainfall. The CHL maxima occurred immediately after the spate of TP during the high flow, indicating that phytoplankton growth was directly controlled by phosphorus. Empirical linear models of CHL-TP indicated that the variation of CHL in premonsoon was accounted 60% ($R^2$ = 0.60, p < 0.05, n = 54) by TP. In the mean time, empirical models of annual CHL-TN showed that the variation of CHL was weakly accounted ($R^2$ = 0.16, p < 0.001) by TN and more strongly ($R^2$ = 0.44, p < 0.001) by TP. Thus, the variation of CHL was more explained by the variation of TP than TN. In situ tests of Nutrient Enrichment Bioassays (NEBs) showed that the growth of CHL was greater in the P-treatments (as $PO_4-P$) than the control and N-treatment (as $NO_3-P$). Overall, our results suggest that phosphorus was aprimary limiting nutrient controlling the seasonal phytoplankton growth, based on the in situ experiments of NEBs.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Water Quality Variation Dynamics between Artificial Reservoir and the Effected Downstream Watershed: the Case Study (인공댐과 그 영향을 받는 하류하천의 수질변동 역동성 : 사례 연구)

  • Han, Jung-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • 제41권3호
    • /
    • pp.382-394
    • /
    • 2008
  • The objective of this study was to analyze temporal trends of water chemistry and spatial heterogeneity between the dam site (Daecheong Reservoir, S1) and the downstream (S2$\sim$S4) using water quality dataset (obtained from the Ministry of Environment, Korea) during 2000$\sim$2007. Water quality, based on eight physical and chemical parameters, varied largely depending on the years, sampling sites, and the discharge volume. Conductivity and nutrients (TN and TP) showed a decreasing trend in the downstream (S4) rather than the dam site during the monsoon. Spatial variation increased toward downstream (S4) from Daecheong Reservoir (S1). Also, BOD and COD increased toward downstream. Because of input of nutrient and pollutant nearby S1, lentic ecosystem in monsoon, BOD and COD were slightly increased. whereas relatively decreased in S4, lotic ecosystem in monsoon, by dilution effect of nutrient and pollutant by discharge from upper dam, S1. Spatial variation of SS increased toward downstream (S4) by the side of Daecheong Reservoir (S1). Based on the dataset, efficient water quality management in the point source tributary streams is required for better water quality of downstream. Monthly characteristics of DO showed the lowest value in the monsoon that tend to increase water temperature. DO was lowest in October at S1 because turbid water, input to the Daecheong Reservoir in the monsoon affect to the postmonsoon period. In contrast, water temperature increased toward summer monsoon, in spite of some differences showed between S1 and S4 environment. Overall, the characteristics of water quality in downstream region have close correlation with discharge amount of Daecheong Reservoir. Thus, those characteristics can explain that discharge control of upper dam mainly affect to the water quality variation in downstream reach.

Valuing Non-market Benefits of Water Quality Improvements in Paldang Reservoir and Han River : A Choice Experiments Study (팔당호 및 한강 수질개선의 비시장가치 측정 - 속성가치선택법을 이용하여 -)

  • Kim, Yong-Joo;Yoo, Young Seong
    • Environmental and Resource Economics Review
    • /
    • 제14권2호
    • /
    • pp.337-379
    • /
    • 2005
  • This choice experiments study values the non-market benefits of water quality improvements in Paldang Reservoir and Han River, located in Korea. A fractional factorial orthogonal design was used to produce four different choice sets per respondent, before employing choice examples to screen out irrational responses. The panel mixed logit model (with normal distributions for the attributes) fit the data best, indicating that allowing for both heterogeneous preferences across households and correlation between repeated choices may represent actual choice behaviors best of all the estimated models. The significant standard deviations of the random attributes suggest that the taste for each attribute may vary considerably in the population. The annual benefits to the Seoul Metropolitan area for a small (large) enhancement of the clarity of water, a gradual removal of unpleasant waters, and a gradual improvement in biodiversity, were estimated to be some 1.5 trillion (1.7 trillion) Won, 2 trillion Won, and 1.7 trillion Won, respectively, with 1.8~2.6 trillion Won for at least two of them occurring together. The study also discusses potential biases germane to choice experiments studies of this type.

  • PDF

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • 제31권3호
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • 제34권1호통권93호
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF