• 제목/요약/키워드: reservoir capacity

Search Result 314, Processing Time 0.021 seconds

Development and Application of a Water Quality Model to Assess Water Purification Techniques for Lakes and Reservoirs (호소수질정화공법의 평가를 위한 수질모형의 개발 및 적용)

  • 박병흔;권순국;장정렬
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.174-186
    • /
    • 2001
  • Excessive outflow of pollutant loads resulting from rapid industrialization has unbalanced the water ecosystem, deteriorating the water quality environment severely. Therefore, measures for improving the water quality are necessary to maintain clean reservoir water and restore water-friendly spaces. A water quality model which is capable of simulating daily reservoir water quality was developed. The model had been applied to Masan reservoir and Wanggung reservoir in Korea. The model appeared to be satisfactory in representing the trend of water quality variations by comparing measured and simulated results. The model had been also applied to assess water purification techniques such as dredged pool, floating island and vegetation purification system. The model was considered to assess the effect of water purification techniques on reservoir water quality improvement. The results of water quality simulation for lake water purification techniques showed that a large facility would be needed to meet the targeted water quality of the reservoir when only one technique is applied. To effectively improve the quality of the polluted reservoir water, it is therefore recommended that pollutant sources should first be controlled, and a combination of the water purification techniques applied to make the utmost use of their secondary effects such as conservation of the reservoir volume capacity, establishment of a recreation space, promotion of bio-diversity, and improvement of the lake landscape.

  • PDF

Estimation of sediment deposition rate in collapsed reservoirs(wetlands) using empirical formulas and multiple regression models (경험공식 및 다중회귀모형을 이용한 붕괴 저수지(습지) 비퇴사량 추정)

  • Kim, Donghyun;Lee, Haneul;Bae, Younghye;Joo, Hongjun;Kim, Deokhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • As facilities such as dam reservoir wetlands and agricultural irrigation reservoir wetlands are built, sedimentation occurs over time through erosion, sedimentation transport, and sediment deposition. Sedimentation issues are very important for the maintenance of reservoir wetlands because long-term sedimentation of sediments affects flood and drought control functions. However, research on resignation has been estimated mainly by empirical formulas due to the lack of available data. The purpose of this study was to calculate and compare the sediment deposition rate by developing a multiple regression model along with actual data and empirical formulas. In addition, it was attempted to identify potential causes of collapse by applying it to 64 reservoir wetlands that suffered flood damage due to the long rainy season in 2020 due to reservoir wetland sedimentation and aging. For the target reservoir, 10 locations including the GaGog reservoir located in Miryang city, Gyeongsangnam province in South Korea, where there is actual survey information, were selected. A multiple regression model was developed in consideration of physical and climatic characteristics, and a total of four empirical formulas and sediment deposition rate were calculated. Using this, the error of the sediment deposition rate was compared. As a result of calculating the sediment deposition rate using the multiple regression model, the error was the lowest from 0.21(m3km2/yr) to 2.13(m3km2/yr). Therefore, based on the sediment deposition rate estimated by the multi-regression model, the change in the available capacity of reservoir wetlands was analyzed, and the effective storage capacity was found to have decreased from 0.21(%) to 16.56(%). In addition, the sediment deposition rate of the reservoir where the overflow damage occurred was relatively higher than that of the reservoir where the piping damage occurred. In other words, accumulating sediment deposition rate at the bottom of the reservoir would result in a lack of acceptable effective water capacity and reduced reservoir flood and drought control capabilities, resulting in reservoir collapse damage.

Application of Hydrological Monitoring System for Urban Flood Disaster Prevention (도시홍수방재를 위한 수문모니터링시스템의 적용)

  • Seo, Kyu-Woo;Na, Hyun-Woo;Kim, Nam-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF

Study on Sedimentation in Reservoir (저수지의 퇴사에 관한 연구)

  • 류희정;김치원
    • Water for future
    • /
    • v.9 no.2
    • /
    • pp.67-75
    • /
    • 1976
  • With 9 existng reservoirs selected in the Sab-Gyo River Basin, the sedimentation of the reservoirs has been calculated by comparing the present capacity with the original value, which revealed its reduced reservoirs capacity. The reservoirs has a total drainage area of 6,792 ha, with a total capacity of 1,204.09 ha-m, and are short of water supply due to reduction of reservoirs capacity. Annual sedimention in the reservcire is relation to the drainage area, the mean of annual rain fall, and the slop of drainage area. The results of obtained from the investigation are summarized as follow; (1) A sediment deposition rate is very high, being about $9.19{m}^3/ha$ of drainage area, and resulting in the average decrease of reservoir capacity by 19.1%. This high rate of deposition could be mainly attributed to the serve denvdation of forests due to disor derly cuttings of tree. (2) An average unit storage of 415.8mm as the time of initial construation is decreesed to 315.59mm at present, as resultting, we could'nt supply water at 566.24ha. (3) A sediment deposition rate as a relation to the capacity of unit drainage area is as follow; $Qs=1.43 (c/a)^{0.531}$ (4) A sediment deposition rate as a relation to the mean of annval rainfall is as follow; $Qs=672.61 p^{0.024}$ (5) A sediment deposition rate as a relation to the mean slop of drainage area is follow; $Qs=267.21 S^{0.597}$

  • PDF

Calculation of Sediment Volume of the Agriculture Reservoir Using DGPS Echo-Sounder (DGPS 음향 측심기를 이용한 농업용 저수지의 퇴적량 산정)

  • Park Seung-Ki;Jeong Jae- Hoon
    • Spatial Information Research
    • /
    • v.13 no.3 s.34
    • /
    • pp.297-307
    • /
    • 2005
  • This study was performed to get the basic data for the dredging project and logical maintenance of the Yaedang reservoir. The survey of reservoir capacity for calculation of sediment volume carried out using DGPS Echo-Sounder during November $25\~30$ in 2004. The latitude and longitude signal from GPS satellite was received a second interval with the UTM coordinate system. Water depth was measured 0.2 second interval by Echo-sounder sensor in MIDAS Surveyor. The UTM coordinate datum were transformed into standard coordinate datum of Korean(TM coordinate datum) using Arc Info System. Mapping of contour was used Sufer, Arc View and Auto CAB Program Storage capacity of Yaedang reservoir was estimated by average contour area method. Result of this time investigation for useful storage determination of Yaedang reservoir was showed 4,601.585 ha-m and was differenced less 5.425ha-m the bygones useful storage.

  • PDF

Evaluation of Supplying Instream Flow by Operation Rule Curve for Heightening Irrigation Reservoir (이수관리곡선에 의한 증고저수지의 하천유지유량 공급 가능성 평가)

  • Lee, Jae-Nam;Noh, Jae-Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.481-490
    • /
    • 2010
  • Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water levels will be heightened from EL. 100.1 m to EL. 102.1 m, and total storages from 21.75 $Mm^3$ to 26.67 $Mm^3$. The simulation for reservoir inflow was conducted by DAWAST model. The annual average irrigation water was estimated to 33.19 $Mm^3$ supplied to 2,975 ha and the instream flows could be allocated with 0.14 mm/d from October to April with annual average of 2.52 $Mm^3$. The operation rule curve was drawn using inflow, irrigation, and instream flow requirements data. The reservoir water storage was simulated on a daily basis in case of both normal and withdrawal limit operation. In case of normal operation, the annual average irrigation water supply increased from 31.95 $Mm^3$ to 33.32 $Mm^3$, the instream water supply from 2.40 $Mm^3$ to 2.44 $Mm^3$, the water storages from 15.74 $Mm^3$ to 19.88 $Mm^3$, and the water supply reliability from 77.3 % to 81.6 %. In case of operation with withdrawal limit, the amount of instream water supply was 2.52 $Mm^3$ from reservoir regardless of the condition while the water storage increased from 16.77 $Mm^3$ to 20.65 $Mm^3$. The irrigation water supply capacity was appropriate for the case of normal operation with 2 m heightened condition. The present instream water supply capacity was 35,000 $m^3$/d (6.86 $Mm^3$/y) while 42,000 $m^3$/d (8.36 $Mm^3$/y) in 2 m heightened condition in case of withdrawal limit operation.

Investigation of Water Quality and Irrigation Water Use Possibility of Reservoirs Near Saemangeum for Upland and Horticultural Fields (전작.원예단지 조성을 위한 새만금 인근 주요 저수지의 수질조사 및 용수이용 가능성 연구)

  • Song, Jae-Do;Son, Jae-Gwon;Choe, Jin-Gyu;Kim, Yeong-Ju
    • KCID journal
    • /
    • v.14 no.2
    • /
    • pp.214-224
    • /
    • 2007
  • This study was carried out to investigate of water quality and irrigation water use possibility of reservoirs near Saemangeum for upland and horticultural fields. Water samples were taken at 6 reservoirs for 5 months from June, 2006 to November, 2006. The water temperature, pH, EC, EC, chlorophyll - a of 6 reservoirs were ranged 8.7-$31.2^circC$, 6.9-9.2, 73.0-637.0$\mu$S/cm, 0.9-443.2mg/$m^3$, respectively. The concentration of DO, BOD, COD, T-N, T-P and SS were ranged 5.7-11.7mg/L, 0.5-8.9mg/L, 2.9-18.0mg/L, 0.07-6.52mg/L, 0.002-0.406mg/L, 0.5-54.0mg/L Also, storage ratio and storage capacity of Mije reservoir, Okgu reservoir, Oknyeo reservoir, Neungje reservoir were decreased between June and April, but those of Oksan reservoir was kept high during irrigation period. Water supply of reservoirs was 4,474,100$m^3$(Oksan), 6,165,900$m^3$(Mije), 13,209,900$m^3$(Okgu), 4,675,600$m^3$(Oknyeo), 7,682,000$m^3$(Neungje), 19,231,000$m^3$(Cheongho) in 2006, respectively. It is resevoirs for upland and horticultural fields that use main irrigation water resources before Saemanguem fresh-water lake development, and use assistance irrigation water resources in emergency after Saemanguem fresh-water lake development. In the meantime, for continuous use of reservoir as irrigation water resource for upland and horticultural fields, we must examine about surplus water capacity, and need investigation about supply possibility of irrigation water, condition of irrigation water, water quality.

  • PDF

Effects of Agricultural Reservoir Rehabilitation on their Flood Control Capacities (농업용 저수지 둑 높이기에 따른 홍수조절효과 분석)

  • Jun, Sang Min;Kang, Moon Seong;Song, Inhong;Hwang, Soon Ho;Kim, Kyeung;Park, Jihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.57-68
    • /
    • 2013
  • About 74 % of reservoirs in Korea are older than 40 years and their storage capacities have been decreased substantially. As part of reservoir reinforcement, the dam heightening project has been ongoing for about 110 reservoirs. The main purpose of the dam heightening project is to secure additional environmental water, while improving flood control capacity by gaining additional storage volume. The objective of this study was to evaluate reservoir flood control capacity changes of dam heightening reservoirs for effective management of additional storage volume. In this study, 13 reservoirs were selected for reservoir simulation of 200 year return period floods. Rainfall data of 1981-2100 were collected and divided into 4 periods (1981-2010; 1995s, 2011-2040; 2025s, 2041-2070; 2055s, 2071-2100; 2085s). Probability rainfalls and 200yr design floods of each period were calculated using FARD2006 and HEC-HMS. Design floods were used as inputs of each reservoir simulation using HEC-5. Overall, future probability rainfalls and design floods tend to increase above the past 1995s. Control ratios were calculated to evaluate flood control capacities of reservoirs. As a result, average flood control ratios were increased from 32.6 % to 44.2 % after dam heightening. Control ratios were increased by 12.7 % (1995s), 12.4 % (2025s), 10.3 % (2055s) and 10.9 % (2085s). The result of this study can be used as a basis for establishing the reservoir management structure in the future.

Estimation of Water Storage in Small Agricultural Reservoir Using Sentinel-2 Satellite Imagery (Sentinel-2 위성영상을 활용한 농업용 저수지 가용수량 추정)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Jang, Min-Won;Hong, Eun-Mi;Kim, Taegon;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Reservoir storage and water level information is essential for accurate drought monitoring and prediction. In particular, the agricultural drought has increased the risk of agricultural water shortages due to regional bias in reservoirs and water supply facilities, which are major water supply facilities for agricultural water. Therefore, it is important to evaluate the available water capacity of the reservoir, and it is necessary to determine the water surface area and water capacity. Remote sensing provides images of temporal water storage and level variations, and a combination of both measurement techniques can indicate a change in water volume. In areas of ungauged water volume, satellite remote sensing image acts as a powerful tool to measure changes in surface water level. The purpose of this study is to estimate of reservoir storage and level variations using satellite remote sensing image combined with hydrological statistical data and the Normalized Difference Water Index (NDWI). Water surface areas were estimated using the Sentinel-2 satellite images in Seosan, Chungcheongnam-do from 2016 to 2018. The remote sensing-based reservoir storage estimation algorithm from this study is general and transferable to applications for lakes and reservoirs. The data set can be used for improving the representation of water resources management for incorporating lakes into weather forecasting models and climate models, and hydrologic processes.

Drought Estimation Model Using a Evaporation Pan with 50 mm Depth (50mm 깊이 증발(蒸發) 팬을 이용한 한발 평가 모델 설정)

  • Oh, Yong Taeg;Oh, Dong Shig;Song, Kwan Cheol;Um, Ki Cheol;Shin, Jae Sung;Im, Jung Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.92-106
    • /
    • 1996
  • Imaginary grass field was assumed suitable as the representative one for simplified estimation of local drought, and a moisture balance booking model computing drought was developed with the limited numbers of its determining factors, such as crop coefficient of the field, reservoir capacity of the soil, and the beginning point of drought as defined by soil moisture status. The maximum effective rainfall was assumed to be the same as the available free space of soil reservoir capacity. The model is similar to a definite depth evaporation pan, which stores rainfall as much as the available free space on the water in it and consumes the water by evaporation. When the pan keeps water less than a certain defined level, it is droughty. The model simulates soil moisture deficit on the assumed grass field for the drought estimation. The model can assess the water requirement, drought intensity, and the index of yield decrement due to drought. The influencing intensity indices of the selected factors were 100, 21, and 16 respectively for crop coefficient, reservoir capacity, and drought beginning point, determined by the annual water requirements as influenced by them in the model. The optimum values of the selected factors for the model were respectively 58% for crop coefficient defined on the energy indicator scale of the small copper pan evaporation, 50 mm for reservoir capacity on the basis of the average of experimentally determined values for sandy loam, loam, clay loam, and clay soils, and 65% of the reservoir capacity for the beginning point of drought.

  • PDF