• 제목/요약/키워드: research topic

검색결과 2,447건 처리시간 0.03초

LDA 토픽모델링을 활용한 인공지능 관련 국가R&D 연구동향 분석 (A Study on Analysis of national R&D research trends for Artificial Intelligence using LDA topic modeling)

  • 양명석;이성희;박근희;최광남;김태현
    • 인터넷정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.47-55
    • /
    • 2021
  • 특정 주제분야에 대한 연구동향 분석은 대부분 논문, 특허 등 문헌정보를 대상으로 한 키워드 추출을 통해 토픽모델링 기법을 적용하여 주요 연구주제와 연도별 추이 등을 살펴보는 방식을 활용하고 있다. 본 논문에서는 국가과학기술지식정보서비스(NTIS)에서 제공하는 인공지능 관련 국가연구개발사업 과제정보를 대상으로 LDA(Latent Dirichlet Allocation) 토픽모델링 기법을 활용하여 연구주제와 관련된 토픽들을 추출·분석하여 국가연구개발사업에 대한 연구주제와 투자방향에 대하여 분석하고자 한다. NTIS는 국가연구개발사업·과제정보를 비롯하여, 논문, 특허, 보고서 등 연구를 통해 생성된 주요 연구개발성과에 이르기까지 방대한 양의 국가R&D 정보를 제공하고 있다. 본 논문에서는 NTIS 통합검색에서 인공지능 키워드와 관련된 분류 검색을 수행하여 검색결과를 확인하고, 최근 3개년 과제정보를 다운로드 받아 기초데이터를 구축하였다. 파이썬에서 제공하는 LDA 토픽모델링 라이브러리를 활용하여 기초데이터 (연구목표, 연구내용, 기대효과, 키워드 등)를 대상으로 관련 토픽과 주제어를 추출하고 분석하여 연구투자방향에 대한 인사이트를 도출하였다.

태권도 뉴스기사의 연도별 주제어 비교분석: 토픽모델링 적용 (Comparative Analysis of the Keywords in Taekwondo News Articles by Year: Applying Topic Modeling Method)

  • 전민수;임효성
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.575-583
    • /
    • 2021
  • 이 연구는 토픽모델링을 적용하여 뉴스기사에 따른 태권도 동향을 연도별로 분석하는 것에 목적이 있다. 언론보도를 통한 태권도 동향을 살펴보기 위해 한국언론재단의 빅카인즈를 통해 뉴스기사와 태권도 전문 언론에 대한 기사를 수집하였다. 검색기간은 2000년 이전, 2001년~2010년, 2011년~2020년 3개의 구간으로 구분하여 검색하여 총 12,124개를 연구자료로 선정하였다. 토픽분석을 위해 전처리 과정을 거쳤으며, LDA 알고리즘을 활용하여 토픽분석을 수행하였다. 이때 모든분석은 python 3을 적용하였다. 그 결과 첫째, 연도별에 따른 언론기사 주제를 분석한 결과 2000년이전 1위는 '세계'. 2위는 '남북', 3위는 '올림픽'으로 나타났으며, 2001년~2010년 1위는 '세계', 2위는 '협회', 3위는 '세계태권도연맹'으로 조사되었다. 2011년~2020년 1위는 '세계', 2위는 '시범', 3위는 '국기원'으로 나타났다. 둘째, 2000년이전 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 2가지로 구분되었다. 구체적으로 Topic 1은 '남·북 체육교류', Topic 2는 '올림픽 시범종목 채택'으로 선정되었다. 셋째, 2001년~2010년 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 3가지로 선정되었다. Topic 1은 '태권도 시범공연 및 비리', Topic 2는 '무주태권도공원 조성', Topic 3은 '세계태권도축제'로 선정되었다. 넷째, 2011년~2020년 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 3가지로 선정되었다. Topic 1은 '2018 평창동계올림픽 성공 개최', Topic 2는 '남북 태권도 합동시범공연 ', Topic 3은 '2017 무주세계태권도선수권대회'로 선정되었다.

토픽모델링을 활용한 국내 수학과 교육과정 연구 동향 분석 : 1997년부터 2019년까지 게재된 국내 수학교육 학술지 논문을 중심으로 (An analysis of domestic research trends of mathematics curriculum research through topic modeling: Focused on domestic journals published from 1997 to 2019)

  • 손태권;이광호
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제59권3호
    • /
    • pp.201-216
    • /
    • 2020
  • 본 연구는 1997년부터 2019년까지 KCI 등재지에 게재된 493편의 국내 수학과 교육과정 논문을 LDA 토픽 모델링을 사용하여 연구 동향을 분석하였다. 그 결과, 국내 수학과 교육과정 연구는 8개의 토픽으로 분류할 수 있었으며 그 중 '교육과정 이행과 평가'의 비중이 가장 낮았다. 또한 교육과정 적용 시기에 따라 토픽들은 다르게 출현했으며 수학과 교육과정에서 강조하는 중점 방향과 부합하는 경향성을 보였다. 이러한 결과를 바탕으로 향후 수학과 교육과정의 발전을 위한 시사점들을 도출하였다.

국내 기록분야 연구주제 분석: 2002~2023년간 기록관리학, 문헌정보학, 역사학 학술논문을 중심으로 (Analysis of Research Topics in Archival Studies: Focusing on Academic Papers in Archival Science, Library and Information Science, and History from 2002 to 2023)

  • 김선욱
    • 한국기록관리학회지
    • /
    • 제23권4호
    • /
    • pp.91-111
    • /
    • 2023
  • 본 연구의 목적은 국내 기록관리학, 문헌정보학, 역사학 학술논문의 서지정보를 분석함으로써 기록분야 연구주제를 분석하는데 있다. 이를 위해 1,173편의 학술논문을 수집한 뒤, 저자키워드 데이터로부터 네트워크 분석을 시행하고 초록 데이터로부터 토픽모델링을 진행하고 분석 결과를 시간의 흐름에 따라 정리하였다. 저자키워드로부터의 네트워크 분석 결과에 따르면, 주요 법령과 정책의 변화에 따라 연구주제 네트워크가 적극적으로 변화하는것이 확인되었다. 초록으로부터의 토픽모델링 결과에 따르면, 전체 학술논문의 주제는 '레코드매니지먼트', '아카이빙', '국가기록정책' 으로 구분된다. 2002~2009년 동안은 '레코드매니지먼트'와 '국가기록정책'이 상대적으로 우세하였으나 2009년부터 균형적인 양적 성장을 이루며 2019년에 정점을 이루었다.

네트워크 분석을 통한 대학생 인성 관련 연구의 동향 분석 (Trend Analysis of Research Related to Personality of University Students Through Network Analysis)

  • 김세경
    • 한국콘텐츠학회논문지
    • /
    • 제21권12호
    • /
    • pp.47-56
    • /
    • 2021
  • 본 연구는 네트워크 분석을 활용하여 대학생 인성 관련 연구의 동향을 파악하고 향후 연구 방향의 시사점을 제공하는데 그 목적이 있다. 이러한 연구목적을 위해 국내 학술지에 게재된 대학생 인성 관련 논문 194편을 대상으로 하였다. 연구결과를 정리하면 다음과 같다. 첫째, 대학생 인성 관련 연구는 2004년부터 발표되기 시작하여 2012년에 소폭 상승하였고, 2015년부터 상승곡선을 이어가다 2017년에 정점을 찍은 후, 하향추세인 것으로 확인된다. 둘째, 연결 중심성과 매개 중심성 분석에서 공통적으로 가장 높은 중심성을 가진 핵심 키워드는 '사회'와 '함양'이었다. 셋째, 1기(2004년-2010년)에는 개인적 차원과 인성의 인지적인 측면의 키워드, 2기(2011년-2015년)에는 사회적인 차원과 인성의 정서적인 측면의 키워드, 3기(2016년-2020년)에는 사회적인 차원과 인성의 인지·정서·행동적인 측면의 키워드가 핵심적이었다. 넷째, 토픽모델링 분석결과, 능력, 생활, 대인, 만족, 적응의 키워드로 이루어진 토픽 2와 역량, 도덕, 시민, 사회, 실천으로 이루어진 토픽 1이 가장 높은 비중을 차지하였다. 다섯째, 1기에는 토픽 4 단독, 2기에는 토픽 1과 토픽 2의 순으로, 3기에는 토픽 2와 토픽 1의 순으로 높은 비중을 차지하는 것으로 나타났다. 본 연구는 대학생 인성 관련 연구에 유용한 근거자료가 될 것이다.

An Online Opinion Analysis on Refugee Acceptance Using Topic Modeling

  • Choi, Sook;Jang, Si Yeon
    • Asian Journal for Public Opinion Research
    • /
    • 제7권3호
    • /
    • pp.169-198
    • /
    • 2019
  • This study focused on the increase in refugee-related discourse in Korean society with the recent inflow of asylum seekers to Jeju Island. The purpose of our study was to understand the trends in public opinion concerning the acceptance of refugees by analyzing the content of refugee-related video commentary on YouTube. Topic modeling was conducted to analyze the main points, context, and ideas in the comments. The results indicated that the media mainly focus on the pros and cons of refugees, restricting the refugee issue to the problem of acceptance with a narrow focus on the case of Jeju Island. Refugee acceptance was treated as overwhelmingly unacceptable in the comments. We found that commenters often used negative discourse in the comments as a device for reproducing and amplifying hate speech.

Text Mining 기법을 활용한 항공안전관리 이슈 분석 (Analysis of Aviation Safety Management Issues using Text Mining)

  • 권문진;이장룡
    • 한국항공운항학회지
    • /
    • 제31권4호
    • /
    • pp.19-27
    • /
    • 2023
  • In this study, a total of 2,584 domestic research papers with the keywords "Aviation Safety" and "Aviation Accidents" were subjected to Text Mining analysis. Various text mining techniques, including keyword frequency analysis, word correlation analysis, network analysis, and topic modeling, were applied to examine the research trends in the field of aviation safety. The results revealed a significant increase in research using the keyword "Aviation Safety" since 2015, with over 300 papers published annually. Through keyword frequency analysis, it was observed that "Aircraft" was the most frequently mentioned term, followed by "Drones" and "Unmanned Aircraft." Phi coefficients were calculated for words closely related to "Aircraft," "Aviation," "Drones," and "Safety." Furthermore, topic modeling was employed to identify 12 distinct topics in the field of aviation safety and aviation accidents, allowing for an in-depth exploration of research trends.

토픽 모델링을 활용한 한국콘텐츠학회 논문지 연구 동향 탐색 (An Exploratory Research Trends Analysis in Journal of the Korea Contents Association using Topic Modeling)

  • 석혜은;김수영;이연수;조현영;이수경;김경화
    • 한국콘텐츠학회논문지
    • /
    • 제21권12호
    • /
    • pp.95-106
    • /
    • 2021
  • 본 연구의 목적은 한국콘텐츠학회 논문지에 게재된 9,858건의 논문을 대상으로 토픽 모델링을 활용하여 지난 20년간 연구동향을 탐색함으로써 콘텐츠 연구개발에서의 주요 토픽을 도출하고 학술적 발전방향을 제공하는데 있다. 추출된 토픽의 신뢰성과 타당성을 확보하기 위해 양적 평가기법 뿐만 아니라 정성적 기법을 단계적으로 적용하여 연구자들이 합의한 수준의 말뭉치가 생성될 때까지 이를 반복적으로 수행하였으며 이에 따른 구체적인 분석 절차를 제시하였다. 분석 결과 8개의 핵심 토픽이 추출되었다. 이는 한국콘텐츠학회가 특정 학문 분야를 한정하지 않고 다양한 분야의 융·복합 연구 논문을 발간하고 있음을 보여준다. 또한 2012년 이전 상반기에는 공학기술 분야 토픽 비중이 상대적으로 높게 나타난 반면, 2012년 이후 하반기에는 사회과학 분야 토픽 출현 비중이 상대적으로 높게 나타났다. 구체적으로 '사회복지' 토픽은 상반기 대비 하반기에 약 4배수 증가세가 나타났다. 토픽별 추세분석을 통해 추세선의 변곡점이 나타난 특정 시점에 주목하여 해당 토픽의 연구동향에 영향을 미친 외적 변인을 탐색하였고 토픽과 외적 변인 간 관련성을 파악하였다. 본 연구결과가 국내 콘텐츠 관련 연구 개발 및 산업 분야에서 진행되고 있는 활발한 논의를 진행하는데 시사점을 제공할 수 있기를 기대한다.

인문사회 과학기술 분야 연구의 학제적 동향 분석 : 토픽 모델링과 네트워크 분석의 활용 (Identifying Interdisciplinary Trends of Humanities, Sociology, Science and Technology Research in Korea Using Topic Modeling and Network Analysis)

  • 최재웅;장재혁;김대환;윤장혁
    • 산업경영시스템학회지
    • /
    • 제42권1호
    • /
    • pp.74-86
    • /
    • 2019
  • As many existing research fields are matured academically, researchers have encountered numbers of academic, social and other problems that cannot be addressed by internal knowledge and methodologies of existing disciplines. Earlier, pioneers of researchers thus are following a new paradigm that breaks the boundaries between the prior disciplines, fuses them and seeks new approaches. Moreover, developed countries including Korea are actively supporting and fostering the convergence research at the national level. Nevertheless, there is insufficient research to analyze convergence trends in national R&D support projects and what kind of content the projects mainly deal with. This study, therefore, collected and preprocessed the research proposal data of National Research Foundation of Korea, transforming the proposal documents to term-frequency matrices. Based on the matrices, this study derived detailed research topics through Latent Dirichlet Allocation, a kind of topic modeling algorithm. Next, this study identified the research topics each proposal mainly deals with, visualized the convergence relationships, and quantitatively analyze them. Specifically, this study analyzed the centralities of the detailed research topics to derive clues about the convergence of the near future, in addition to visualizing the convergence relationship and analyzing time-varying number of research proposals per each topic. The results of this study can provide specific insights on the research direction to researchers and monitor domestic convergence R&D trends by year.

단어 유사도를 이용한 뉴스 토픽 추출 (News Topic Extraction based on Word Similarity)

  • 김동욱;이수원
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1138-1148
    • /
    • 2017
  • 토픽 추출은 문서 집합으로부터 그 문서 집합을 대표하는 토픽을 자동 추출하는 기술이며 자연어 처리의 중요한 연구 분야이다. 대표적인 토픽 추출 방법으로는 잠재 디리클레 할당과 단어 군집화 기반 토픽 추출방법이 있다. 그러나 이러한 방법의 문제점으로는 토픽 중복 문제와 토픽 혼재 문제가 있다. 토픽 중복 문제는 특정 토픽이 여러 개의 토픽으로 추출되는 문제이며, 토픽 혼재 문제는 추출된 하나의 토픽 내에 여러 토픽이 혼재되어 있는 문제이다. 이러한 문제를 해결하기 위하여 본 연구에서는 토픽 중복 문제에 대해 강건한 잠재 디리클레 할당으로 토픽을 추출하고 단어 간 유사도를 이용하여 토픽 분리 및 토픽 병합의 단계를 거쳐 최종적으로 토픽을 보정하는 방법을 제안한다. 실험 결과 제안 방법이 잠재 디리클레 할당 방법에 비해 좋은 성능을 보였다.