• Title/Summary/Keyword: research evaluation services

Search Result 1,138, Processing Time 0.033 seconds

Beyond Platforms to Ecosystems: Research on the Metaverse Industry Ecosystem Utilizing Information Ecology Theory (플랫폼을 넘어 생태계로: Information Ecology Theory를 활용한 메타버스 산업 생태계연구 )

  • Seokyoung Shin;Jaiyeol Son
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.131-159
    • /
    • 2023
  • Recently, amidst the backdrop of the COVID-19 pandemic shifting towards an endemic phase, there has been a rise in discussions and debates about the future of the metaverse. Simultaneously, major metaverse platforms like Roblox have been launching services integrated with generative AI, and Apple's mixed reality hardware, Vision Pro, has been announced, creating new expectations for the metaverse. In this situation where the outlook for the metaverse is divided, it is crucial to diagnose the metaverse from an ecosystem perspective, examine its key ecological features, driving forces for development, and future possibilities for advancement. This study utilized Wang's (2021) Information Ecology Theory (IET) framework, which is representative of ecosystem research in the field of Information Systems (IS), to derive the Metaverse Industrial Ecosystem (MIE). The analysis revealed that the MIE consists of four main domains: Tech Landscape, Category Ecosystem, Metaverse Platform, and Product/Service Ecosystem. It was found that the MIE exhibits characteristics such as digital connectivity, the integration of real and virtual worlds, value creation capabilities, and value sharing (Web 3.0). Furthermore, the interactions among the domains within the MIE and the four characteristics of the ecosystem were identified as driving forces for the development of the MIE at an ecosystem level. Additionally, the development of the MIE at an ecosystem level was categorized into three distinct stages: Narrow Ecosystem, Expanded Ecosystem, and Everywhere Ecosystem. It is anticipated that future advancements in related technologies and industries, such as robotics, AI, and 6G, will promote the transition from the current Expanded Ecosystem level of the MIE to an Everywhere Ecosystem level, where the connection between the real and virtual worlds is pervasive. This study provides several implications. Firstly, it offers a foundational theory and analytical framework for ecosystem research, addressing a gap in previous metaverse studies. It also presents various research topics within the metaverse domain. Additionally, it establishes an academic foundation that integrates concept definition research and impact studies, which are key areas in metaverse research. Lastly, referring to the developmental stages and conditions proposed in this study, businesses and governments can explore future metaverse markets and related technologies. They can also consider diverse metaverse business strategies. These implications are expected to guide the exploration of the emerging metaverse market and facilitate the evaluation of various metaverse business strategies.

The Classification System and Information Service for Establishing a National Collaborative R&D Strategy in Infectious Diseases: Focusing on the Classification Model for Overseas Coronavirus R&D Projects (국가 감염병 공동R&D전략 수립을 위한 분류체계 및 정보서비스에 대한 연구: 해외 코로나바이러스 R&D과제의 분류모델을 중심으로)

  • Lee, Doyeon;Lee, Jae-Seong;Jun, Seung-pyo;Kim, Keun-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.127-147
    • /
    • 2020
  • The world is suffering from numerous human and economic losses due to the novel coronavirus infection (COVID-19). The Korean government established a strategy to overcome the national infectious disease crisis through research and development. It is difficult to find distinctive features and changes in a specific R&D field when using the existing technical classification or science and technology standard classification. Recently, a few studies have been conducted to establish a classification system to provide information about the investment research areas of infectious diseases in Korea through a comparative analysis of Korea government-funded research projects. However, these studies did not provide the necessary information for establishing cooperative research strategies among countries in the infectious diseases, which is required as an execution plan to achieve the goals of national health security and fostering new growth industries. Therefore, it is inevitable to study information services based on the classification system and classification model for establishing a national collaborative R&D strategy. Seven classification - Diagnosis_biomarker, Drug_discovery, Epidemiology, Evaluation_validation, Mechanism_signaling pathway, Prediction, and Vaccine_therapeutic antibody - systems were derived through reviewing infectious diseases-related national-funded research projects of South Korea. A classification system model was trained by combining Scopus data with a bidirectional RNN model. The classification performance of the final model secured robustness with an accuracy of over 90%. In order to conduct the empirical study, an infectious disease classification system was applied to the coronavirus-related research and development projects of major countries such as the STAR Metrics (National Institutes of Health) and NSF (National Science Foundation) of the United States(US), the CORDIS (Community Research & Development Information Service)of the European Union(EU), and the KAKEN (Database of Grants-in-Aid for Scientific Research) of Japan. It can be seen that the research and development trends of infectious diseases (coronavirus) in major countries are mostly concentrated in the prediction that deals with predicting success for clinical trials at the new drug development stage or predicting toxicity that causes side effects. The intriguing result is that for all of these nations, the portion of national investment in the vaccine_therapeutic antibody, which is recognized as an area of research and development aimed at the development of vaccines and treatments, was also very small (5.1%). It indirectly explained the reason of the poor development of vaccines and treatments. Based on the result of examining the investment status of coronavirus-related research projects through comparative analysis by country, it was found that the US and Japan are relatively evenly investing in all infectious diseases-related research areas, while Europe has relatively large investments in specific research areas such as diagnosis_biomarker. Moreover, the information on major coronavirus-related research organizations in major countries was provided by the classification system, thereby allowing establishing an international collaborative R&D projects.

Natural Language Processing Model for Data Visualization Interaction in Chatbot Environment (챗봇 환경에서 데이터 시각화 인터랙션을 위한 자연어처리 모델)

  • Oh, Sang Heon;Hur, Su Jin;Kim, Sung-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.281-290
    • /
    • 2020
  • With the spread of smartphones, services that want to use personalized data are increasing. In particular, healthcare-related services deal with a variety of data, and data visualization techniques are used to effectively show this. As data visualization techniques are used, interactions in visualization are also naturally emphasized. In the PC environment, since the interaction for data visualization is performed with a mouse, various filtering for data is provided. On the other hand, in the case of interaction in a mobile environment, the screen size is small and it is difficult to recognize whether or not the interaction is possible, so that only limited visualization provided by the app can be provided through a button touch method. In order to overcome the limitation of interaction in such a mobile environment, we intend to enable data visualization interactions through conversations with chatbots so that users can check individual data through various visualizations. To do this, it is necessary to convert the user's query into a query and retrieve the result data through the converted query in the database that is storing data periodically. There are many studies currently being done to convert natural language into queries, but research on converting user queries into queries based on visualization has not been done yet. Therefore, in this paper, we will focus on query generation in a situation where a data visualization technique has been determined in advance. Supported interactions are filtering on task x-axis values and comparison between two groups. The test scenario utilized data on the number of steps, and filtering for the x-axis period was shown as a bar graph, and a comparison between the two groups was shown as a line graph. In order to develop a natural language processing model that can receive requested information through visualization, about 15,800 training data were collected through a survey of 1,000 people. As a result of algorithm development and performance evaluation, about 89% accuracy in classification model and 99% accuracy in query generation model was obtained.

A Study on the Health Insurance Management System; With Emphasis on the Management Operating Cost (의료보험 관리체계에 대한 연구 - 관리비용을 중심으로 -)

  • 남광성
    • Korean Journal of Health Education and Promotion
    • /
    • v.6 no.2
    • /
    • pp.23-39
    • /
    • 1989
  • There have been a lot of considerable. discussion and debate surrounding the management model in the health insurance management system and opinions regarding the management operating cost. It is a well known fact that there have always been dissenting opinions and debates surrounding the issue. The management operating cost varies according to the scale of the management organization and component members characteristics of the insurance carrier. Therefore, it is necessary to examine and compare the management operating cost to the simulated management models developed to cover those eligible for the health insurance scheme in this country. Since the management operating cost can vary according to the different models of management, four alternative management models have been established based on the critical evaluation of existing theories concerned, as well as on the basis of the survey results and simulation attempts. The first alternative model is the Unique Insurance Carrier Model(Ⅰ) ; desigened to cover all of the people with no classification of insurance qualifications and finances from the source of contribution of the insured, nationwide. The second is the Management Model of Large-scale District Insurance Carrier(Ⅱ) ; this means the Korean society would be divided into 21 large districts; each having its own insurance carrier that would cover the people in that particular district with no classification of insurance qualifications arid finances as in Model I. The third is the Management Model of Insurance Carrier Divided by Area and Classified with Occupation if Largescale (Ⅲ) ; to serve the self-employed in the 21 districts divided as in Model Ⅱ. It would serve the employees and their dependents by separate insurance carriers in large-scale similar to the area of the district-scale for the self-employed, so that the insurance qualifications and finances would be classified with each of the insurance carriers: The last is the Management Model of the Multi - insurance Carrier (Ⅳ) based on the Si. Gun. Gu area which will cover their own self- employed people in the area with more than 150 additional insurance carriers covering the employees and their dependents. The manpower necessary to provide services to all of the people according to the four models is calculated through simulation trials. It indicates that the Management Model of Large-scale District Insurance Carrier requires the most manpower among the four alternative models. The unit management operating costs per the insured individuals and covered persons are leveled with several intervals based on the insurance recipients. in their characteristics. The interval levels derived from the regression analysis reveal that the larger the scale of the insurance carriers is in the number of those insured and covered. the more the unit management operating cost decreases. significantly. Moreover. the result of the quadratic functional formula also shows the U-shape significantly. The management operating costs derived from the simulated calculation. on the basis of the average salary and related cost per staff- member of the Health Insurance Societies for Occupational Labours and Korean Medical Insurance Corporation for the Official Servants and Private School Teachers in 1987 fiscal year. show that the Model of Multi-insurance Carrier warrants the highest management operating cost. Meanwhile the least expensive management operating cost is the Management Model of Unique Insurance Carrier. Insurance Carrier Divided by Area and Classified with Occupation in Large-scale. and Large-scale District Insurance Carrier. in order. Therefore. it is feasible to select the Unique Insurance Carrier Model among the four alternatives from the viewpoint of the management operating cost and in the sense of the flexibility in promoting the productivity of manpower in the human services field. However. the choice of the management model for health insurance systems and its application should be examined further utilizing the operation research analysis for such areas as the administrative efficiency and factors related to computer cost etc.

  • PDF

A Study on Design of Agent based Nursing Records System in Attending System (에이전트기반 개방병원 간호기록시스템 설계에 관한 연구)

  • Kim, Kyoung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.73-94
    • /
    • 2010
  • The attending system is a medical system that allows doctors in clinics to use the extra equipment in hospitals-beds, laboratory, operating room, etc-for their patient's care under a contract between the doctors and hospitals. Therefore, the system is very beneficial in terms of the efficiency of the usage of medical resources. However, it is necessary to develop a strong support system to strengthen its weaknesses and supplement its merits. If doctors use hospital beds under the attending system of hospitals, they would be able to check a patient's condition often and provide them with nursing care services. However, the current attending system lacks delivery and assistance support. Thus, for the successful performance of the attending system, a networking system should be developed to facilitate communication between the doctors and nurses. In particular, the nursing records in the attending system could help doctors monitor the patient's condition and provision of nursing care services. A nursing record is the formal documentation associated with nursing care. It is merely a data repository that helps nurses to track their activities; nursing records thus represent a resource of primary information that can be reused. In order to maximize their usefulness, nursing records have been introduced as part of computerized patient records. However, nursing records are internal data that are not disclosed by hospitals. Moreover, the lack of standardization of the record list makes it difficult to share nursing records. Under the attending system, nurses would want to minimize the amount of effort they have to put in for the maintenance of additional records. Hence, they would try to maintain the current level of nursing records in the form of record lists and record attributes, while doctors would require more detailed and real-time information about their patients in order to monitor their condition. Therefore, this study developed a system for assisting in the maintenance and sharing of the nursing records under the attending system. In contrast to previous research on the functionality of computer-based nursing records, we have emphasized the practical usefulness of nursing records from the viewpoint of the actual implementation of the attending system. We suggested that nurses could design a nursing record dictionary for their convenience, and that doctors and nurses could confirm the definitions that they looked up in the dictionary through negotiations with intelligent agents. Such an agent-based system could facilitate networking among medical institutes. Multi-agent systems are a widely accepted paradigm for the distribution and sharing of computation workloads in the scientific community. Agent-based systems have been developed with differences in functional cooperation, coordination, and negotiation. To increase such communication, a framework for a multi-agent based system is proposed in this study. The agent-based approach is useful for developing a system that promotes trade-offs between transactions involving multiple attributes. A brief summary of our contributions follows. First, we propose an efficient and accurate utility representation and acquisition mechanism based on a preference scale while minimizing user interactions with the agent. Trade-offs between various transaction attributes can also be easily computed. Second, by providing a multi-attribute negotiation framework based on the attribute utility evaluation mechanism, we allow both the doctors in charge and nurses to negotiate over various transaction attributes in the nursing record lists that are defined by the latter. Third, we have designed the architecture of the nursing record management server and a system of agents that provides support to the doctors and nurses with regard to the framework and mechanisms proposed above. A formal protocol has also been developed to create and control the communication required for negotiations. We verified the realization of the system by developing a web-based prototype. The system was implemented using ASP and IIS5.1.

Financial Condition and the Determinants of Credit Ratings in Korean Small and Medium-Sized Business (중소상공인의 금융현황과 신용등급의 결정요인 관련 연구)

  • Kang, Hyoung-Goo;Binh, Ki Beom;Lee, Hong-Kyun;Koo, Bonha
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.6
    • /
    • pp.135-154
    • /
    • 2020
  • This paper analyzes the 5,521 samples of the small and medium-sized businesses(SMBs) obtained from the Korea Credit Guarantee Fund. From January 2014 to September 2019, 85% of the SMBs have 5 or fewer full-time employees. The proportion of SMBs is overwhelmed by the elderly men, and most founders are the CEO. Also, about 87% of the workplace types are rented, while 64% of the CEO's residence types are owner-occupation. 47% of the financial grade score is less than 10 points out of 100 and 80% of SMBs have less than 200 million won of the loan guarantee. In particular, the total guarantee loan amount or the days of net guarantee have significantly positive relations with the working period of the CEO in the same industry, the number of employees, the operation period of SMBs, and the corporate business type. In the case of the financial grading score which has the highest weight in overall credit rating gets higher with the higher number of employees, the longer the operation period, and the corporate business type. However, the quantified non-financial grading score has no significant relationship with other explanatory variables, except for the corporate business type. This implies that a non-financial grade score is measured by other determinants that are not observed by the Korea credit guarantee fund. The pure non-financial grade score has positive relations with the working period of the CEO. Overall, this paper would help Korean SMBs upgrade their credit ratings and expand the money supply when there is no standardized credit rating model or no publicly available evaluation criteria for SMBs. We expect this paper provides important insights for further research and policy-makers for SMBs. In particular, to address the financial needs of thin-filers such as SMBs, technology-based financial services (TechFin) would use alternative data to evaluate the financial capabilities of thin-filers and to develop new financial services.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.

Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model (머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로)

  • Eom, Haneul;Kim, Jaeseong;Choi, Sangok
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-129
    • /
    • 2020
  • This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.

Variation of Hospital Costs and Product Heterogeneity

  • Shin, Young-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.11 no.1
    • /
    • pp.123-127
    • /
    • 1978
  • The major objective of this research is to identify those hospital characteristics that best explain cost variation among hospitals and to formulate linear models that can predict hospital costs. Specific emphasis is placed on hospital output, that is, the identification of diagnosis related patient groups (DRGs) which are medically meaningful and demonstrate similar patterns of hospital resource consumption. A casemix index is developed based on the DRGs identified. Considering the common problems encountered in previous hospital cost research, the following study requirements are estab-lished for fulfilling the objectives of this research: 1. Selection of hospitals that exercise similar medical and fiscal practices. 2. Identification of an appropriate data collection mechanism in which demographic and medical characteristics of individual patients as well as accurate and comparable cost information can be derived. 3. Development of a patient classification system in which all the patients treated in hospitals are able to be split into mutually exclusive categories with consistent and stable patterns of resource consumption. 4. Development of a cost finding mechanism through which patient groups' costs can be made comparable across hospitals. A data set of Medicare patients prepared by the Social Security Administration was selected for the study analysis. The data set contained 27,229 record abstracts of Medicare patients discharged from all but one short-term general hospital in Connecticut during the period from January 1, 1971, to December 31, 1972. Each record abstract contained demographic and diagnostic information, as well as charges for specific medical services received. The 'AUT-OGRP System' was used to generate 198 DRGs in which the entire range of Medicare patients were split into mutually exclusive categories, each of which shows a consistent and stable pattern of resource consumption. The 'Departmental Method' was used to generate cost information for the groups of Medicare patients that would be comparable across hospitals. To fulfill the study objectives, an extensive analysis was conducted in the following areas: 1. Analysis of DRGs: in which the level of resource use of each DRG was determined, the length of stay or death rate of each DRG in relation to resource use was characterized, and underlying patterns of the relationships among DRG costs were explained. 2. Exploration of resource use profiles of hospitals; in which the magnitude of differences in the resource uses or death rates incurred in the treatment of Medicare patients among the study hospitals was explored. 3. Casemix analysis; in which four types of casemix-related indices were generated, and the significance of these indices in the explanation of hospital costs was examined. 4. Formulation of linear models to predict hospital costs of Medicare patients; in which nine independent variables (i. e., casemix index, hospital size, complexity of service, teaching activity, location, casemix-adjusted death. rate index, occupancy rate, and casemix-adjusted length of stay index) were used for determining factors in hospital costs. Results from the study analysis indicated that: 1. The system of 198 DRGs for Medicare patient classification was demonstrated not only as a strong tool for determining the pattern of hospital resource utilization of Medicare patients, but also for categorizing patients by their severity of illness. 2. The wei틴fed mean total case cost (TOTC) of the study hospitals for Medicare patients during the study years was $11,27.02 with a standard deviation of $117.20. The hospital with the highest average TOTC ($1538.15) was 2.08 times more expensive than the hospital with the lowest average TOTC ($743.45). The weighted mean per diem total cost (DTOC) of the study hospitals for Medicare patients during the sutdy years was $107.98 with a standard deviation of $15.18. The hospital with the highest average DTOC ($147.23) was 1.87 times more expensive than the hospital with the lowest average DTOC ($78.49). 3. The linear models for each of the six types of hospital costs were formulated using the casemix index and the eight other hospital variables as the determinants. These models explained variance to the extent of 68.7 percent of total case cost (TOTC), 63.5 percent of room and board cost (RMC), 66.2 percent of total ancillary service cost (TANC), 66.3 percent of per diem total cost (DTOC), 56.9 percent of per diem room and board cost (DRMC), and 65.5 percent of per diem ancillary service cost (DTANC). The casemix index alone explained approximately one half of interhospital cost variation: 59.1 percent for TOTC and 44.3 percent for DTOC. Thsee results demonstrate that the casemix index is the most importand determinant of interhospital cost variation Future research and policy implications in regard to the results of this study is envisioned in the following three areas: 1. Utilization of casemix related indices in the Medicare data systems. 2. Refinement of data for hospital cost evaluation. 3. Development of a system for reimbursement and cost control in hospitals.

  • PDF

Evaluation of Crop Characteristics of Sorghum (Sorghum bicolor L.) Germplasm for the Selection of Excellent Resources (우수자원 선발을 위한 수수(Sorghum bicolor L.) 유전자원의 특성평가)

  • Yoon, Seong-Tak;Jeong, In-Ho;Han, Tae-Kyu;Kim, Young-Jung;Yu, Je-Bin;Yang, Gyeong;Ye, Min-Hee;Baek, Seung-Woo;Kim, Kun-Woo
    • Korean Journal of Plant Resources
    • /
    • v.29 no.4
    • /
    • pp.479-494
    • /
    • 2016
  • The aim of this study is to select the superior resources of high yield, high content of functional material optimal to mechanical harvesting by the evaluation of crop growth and yield characteristics in sorghum germplasm. One hundred accessions of sorghum germplasm were used in this experiment. Days from seeding to heading date showed the range from 68 to 94 days with the highest frequency proportion was the group from 80 to 85 days, which occupied 34% (34 plant resources) of 100 germplasm. Ear types of 100 sorghum germplasm could be classified as 7 types of broom-tillering, half broom-tillering, extreme open-loose type, open-loose type, intermediate type, compact type, extreme-compact type of which intermediate type was the highest ratio of 28% (28 plant resources) of 100 germplasm. Yield showed the range from 106 to 365 ㎏/10a with the highest frequency proportion of it was the group from 150 to 200 ㎏/10a, which occupied 44% (44 plant resources) of 100 germplasm. Among 100 sorghum germplasm, 18 ideal resources of high yield and short plant height appropriate for mechanical harvesting were selected. In order to evaluate high content of functional substance, selected 18 resources were analyzed for total polyphenol content, DPPH radical scavenging activity and total anthocyanin content. Finally, we selected 5 resources of short plant height, high yield, high content of total polyphenol and high DPPH radical scavenging activity among 18 genetic resources.