• Title/Summary/Keyword: research domain analysis

Search Result 1,675, Processing Time 0.024 seconds

Domain Analysis of Device Drivers Using Code Clone Detection Method

  • Ma, Yu-Seung;Woo, Duk-Kyun
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.394-402
    • /
    • 2008
  • Domain analysis is the process of analyzing related software systems in a domain to find their common and variable parts. In the case of device drivers, they are highly suitable for domain analysis because device drivers of the same domain are implemented similarly for each device and each system that they support. Considering this characteristic, this paper introduces a new approach to the domain analysis of device drivers. Our method uses a code clone detection technique to extract similarity among device drivers of the same domain. To examine the applicability of our method, we investigated whole device drivers of a Linux source. Results showed that many reusable similar codes can be discerned by the code clone detection method. We also investigated if our method is applicable to other kernel sources. However, the results show that the code clone detection method is not useful for the domain analysis of all kernel sources. That is, the applicability of the code clone detection method to domain analysis is a peculiar feature of device drivers.

  • PDF

Ego-centered Topic Citation Analysis on Folksonomy Research Documents (폭소노미 연구 문헌에 대한 자아 중심 주제 인용 분석)

  • Lee, Jae Yun
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.4
    • /
    • pp.295-312
    • /
    • 2012
  • This research aims to present the ego-centered topic citation analysis, which is a new application of White's ego-centered citation analysis, for analyzing multilayered knowledge structure of a subject domain. An experimental topic citation analysis was carried out on the folksonomy research documents retrieved from Web of Science. Ego-centered topic citation analyses on folksonomy research domain were conducted in three stages: ego-documents set analysis, topic citation identity analysis, and topic citation image analysis. The results showed that the ego-centered topic citation analysis suggested in this study was successfully performed to illustrate the inner and the outer knowledge structures of folksonomy research domain.

Theoretical Study on Domain Analysis (도메인 분석(domain analysis)에 관한 이론적 고찰)

  • Yoo, Yeong-Jun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.1
    • /
    • pp.139-162
    • /
    • 2006
  • This study suggested a knowledge theory, theoretical framework and general principles in methodologies for library and information science by theoretically weighing domain analysis. The central concept to domain analysis are a subject knowledge constituting the domain and a discourse communities to share their knowledge. Therefore the study described a definition of domain and explained domain in ontological, epistemological, and sociological dimensions, proposed eleven approaches available in domain analysis. And the study argued the implications of domain analysis for library and information in position of socio-cognitive view and pragmatic realism.

A Study on the Method for Dynamic Response Analysis in Frequency Domain of an Offshore Wind Turbine by Linearization of Equations of Motion for Multibody (다물체계 운동 방정식 선형화를 통한 해상 풍력 발전기 동적 거동의 주파수 영역 해석 방법에 관한 연구)

  • Ku, Namkug;Roh, Myung-Il;Ha, Sol;Shin, Hyun-Kyoung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • In this study, we describe a method to analysis dynamic behavior of an offshore wind turbine in the frequency domain and expected effects of the method. An offshore wind turbine, which is composed of platform, tower, nacelle, hubs, and blades, can be considered as multibody systems. In general, the dynamic analysis of multibody systems are carried out in the time domain, because the equations of motion derived based on the multibody dynamics are generally nonlinear differential equations. However, analyzing the dynamic behavior in time domain takes longer than in frequency domain. In this study, therefore, we describe how to analysis the system multibody systems in the frequency domain. For the frequency domain analysis, the non-linear differential equations are linearized using total derivative and Taylor series expansions, and then the linearized equations are solved in time domain. This method was applied to analysis of double pendulum system for the verification of its effectiveness, and the equations of motion for the offshore wind turbine was derived with assuming that the wind turbine is rigid multibody systems. Using this method, the dynamic behavior analysis of the offshore wind turbine can be expected to take less time.

Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs

  • Tabaru, Timucin Emre;Hayber, Sekip Esat;Saracoglu, Omer Galip
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.250-260
    • /
    • 2018
  • A pressure wave created by the photoacoustic effect is affected by the medium and by laser parameters. The effect of these parameters on the generated pressure wave can be seen by solving the photoacoustic wave equation. These solutions which are examined in the time domain and the frequency domain should be considered by researchers in acoustic sensor design. In particular, frequency domain analysis contains significant information for designing the sensor. The most important part of this information is the determination of the operating frequency of the sensor. In this work, the laser parameters to excite the medium, and the acoustic signal parameters created by the medium are analyzed. For the first time, we have obtained solutions for situations which have no frequency domain solutions in the literature. The main focal point in this work is that the frequency domain solutions of the acoustic wave equation are performed and the effects of the frequency analysis of the related parameters are shown comparatively from the viewpoint of using them in acoustic sensor designs.

A Digital Signal Processing System for Analysis of Skeletal Muscle EMG Signal (골격근의 근전도 신호 분석을 위하 디지탈 신호처리 시스템의 설계)

  • 전철완
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.155-164
    • /
    • 1996
  • In the clinical environment, measurements of some characteristics of the skeletal muscle are currently used to assess the severity of a neuromuscular disease or in some cases to assist in making a diagnosis. But a quantitative method of evaluation has not yet been introduced satisfactorily. In this paper, the skeletal EMG(biceps muscle, masseter muscle) analysis has been processed both in the time and in the frequency domain by designing the digital signal processing system based on pentium PC and transputer (IMS 7805). The experiment have been performed in five normal subjects, and various parameters have been statistically tested and compare4 As a results, the effective parameters obtained for the evaluation of skeletal EMG electrical activity are turn analysis, MiTi, MiTa, IEMG, PDF in the time domain, and are mean frequency, median frequency, skewness, kurtosis, muscle fatigue slope in the frequency domain. The designed H/W and S/W in this study can be used effectively for the establishment of EMG data base and for clinical research.

  • PDF

Domain Analysis of Research on Prediction and Analysis of Slope Failure by Co-Word Analysis (동시출현단어 분석을 활용한 비탈면 붕괴 예측 및 분석 연구에 관한 지적구조 분석)

  • Kim, Sun-Kyum;Kim, Seung-Hyun
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.307-319
    • /
    • 2021
  • Although it is currently conducting slope management and research using digital technologies such as drones, big data, and artificial intelligence, it is still somewhat insufficient and is still vulnerable to slope failure. For this reason, it is inevitable to present the development direction for research on prediction and analysis of slope failure using the digital technologies to effectively deal with slope failure, which requires a preemptive understanding of prediction and analysis of slope failure. In this paper, we collected literature data based on the Web of Science for five years from January 1, 2016 to December 31, 2020 and analyzed by co-word analysis to identify the domain structure of research on prediction and analysis of slope failure. Detailed subject areas were identified through network analysis, and the domain relationships between keywords were visualized to derive global and regionally oriented keywords through relationship, centrality analysis. In addition, the clusters formed by performing cluster analysis were displayed on the multidimensional scailing map, and the domain structure according to the correlation between each keyword was presented. The results of this study reveal the domain structure of research on prediction and analysis of slope failure, and are expected to be usefully used to find future research directions.

Evaluation of the Soil-structure Interaction Effect on Seismically Isolated Nuclear Power Plant Structures (지반-구조물 상호작용이 면진 원전구조물의 지진응답에 미치는 영향 평가)

  • Lee, Eun-haeng;Kim, Jae-min;Joo, Kwang-ho;Kim, Hyun-uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • This study intends to evaluate the conservativeness of the fixed-base analysis as compared to the soil-structure interaction (SSI) analysis for the seismically isolated model of a nuclear power plant in Korea. To that goal, the boundary reaction method (BRM), combining frequency-domain and time-domain analyses in a twofold process, is adopted for the SSI analysis considering the nonlinearity of the seismic base isolation. The program KIESSI-3D is used for computing the reaction forces in the frequency domain and the program MIDAS/Civil is applied for the nonlinear time-domain analysis. The BRM numerical model is verified by comparing the results of the frequency-domain analysis and time-domain analysis for the soil-structure system with an equivalent linear base isolation model. Moreover, the displacement response of the base isolation and the horizontal response at the top of the structure obtained by the nonlinear SSI analysis using BRM are compared with those obtained by the fixed-base analysis. The comparison reveals that the fixed-base analysis provides conservative peak deformation for the base isolation but is not particularly conservative in term of the floor response spectrum of the superstructure.

Predicting of tall building response to non-stationary winds using multiple wind speed samples

  • Huang, Guoqing;Chen, Xinzhong;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.227-244
    • /
    • 2013
  • Non-stationary extreme winds such as thunderstorm downbursts are responsible for many structural damages. This research presents a time domain approach for estimating along-wind load effects on tall buildings using multiple wind speed time history samples, which are simulated from evolutionary power spectra density (EPSD) functions of non-stationary wind fluctuations using the method developed by the authors' earlier research. The influence of transient wind loads on various responses including time-varying mean, root-mean-square value and peak factor is also studied. Furthermore, a simplified model is proposed to describe the non-stationary wind fluctuation as a uniformly modulated process with a modulation function following the time-varying mean. Finally, the probabilistic extreme response and peak factor are quantified based on the up-crossing theory of non-stationary process. As compared to the time domain response analysis using limited samples of wind record, usually one sample, the analysis using multiple samples presented in this study will provide more statistical information of responses. The time domain simulation also facilitates consideration of nonlinearities of structural and wind load characteristics over previous frequency domain analysis.