• Title/Summary/Keyword: resampling techniques

Search Result 27, Processing Time 0.026 seconds

Digital image watermarking techniques using multiresolution wavelet transform in Sequency domain (다해상도 웨이브렛 변환을 사용한 주파수 영역에서의 디지털 영상 워터마킹 기법)

  • 신종홍;연현숙;지인호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2074-2084
    • /
    • 2001
  • la this paper, a new digital watermarking algorithm using wavelet transform in frequency domain is suggested. The wavelet coefficients of low frequency subband are utilized to embed the watermark, After the original image is transformed using discrete wavelet transform, their coefficients are transformed into efficient1y in Sequency domain. DCT and FFT transforms are utilized in this processing. Watermark image of general image format is transformed using DCT and the hiding watermark into wavelet coefficients is equally distributed in frequency domain. Next, these wavelet coefficients are performed with inverse transform. The detection process of watermark is performed with reverse direction to insertion process. In this paper, we developed core watermark technologies which are a data hiding technology to hide unique logo mark which symbolizes the copyright and a robust protection technology to protect logo data from external attack like as compression, filtering, resampling, cropping. The experimental results show that two suggested watermarking technologies are invisible and robust.

  • PDF

Predictive Optimization Adjusted With Pseudo Data From A Missing Data Imputation Technique (결측 데이터 보정법에 의한 의사 데이터로 조정된 예측 최적화 방법)

  • Kim, Jeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.200-209
    • /
    • 2019
  • When forecasting future values, a model estimated after minimizing training errors can yield test errors higher than the training errors. This result is the over-fitting problem caused by an increase in model complexity when the model is focused only on a given dataset. Some regularization and resampling methods have been introduced to reduce test errors by alleviating this problem but have been designed for use with only a given dataset. In this paper, we propose a new optimization approach to reduce test errors by transforming a test error minimization problem into a training error minimization problem. To carry out this transformation, we needed additional data for the given dataset, termed pseudo data. To make proper use of pseudo data, we used three types of missing data imputation techniques. As an optimization tool, we chose the least squares method and combined it with an extra pseudo data instance. Furthermore, we present the numerical results supporting our proposed approach, which resulted in less test errors than the ordinary least squares method.

Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms

  • Kidega, Richard;Ondiaka, Mary Nelima;Maina, Duncan;Jonah, Kiptanui Arap Too;Kamran, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.259-272
    • /
    • 2022
  • Rockburst is a dynamic, multivariate, and non-linear phenomenon that occurs in underground mining and civil engineering structures. Predicting rockburst is challenging since conventional models are not standardized. Hence, machine learning techniques would improve the prediction accuracies. This study describes decision based uncertainty models to predict rockburst in underground engineering structures using gradient boosting algorithms (GBM). The model input variables were uniaxial compressive strength (UCS), uniaxial tensile strength (UTS), maximum tangential stress (MTS), excavation depth (D), stress ratio (SR), and brittleness coefficient (BC). Several models were trained using different combinations of the input variables and a 3-fold cross-validation resampling procedure. The hyperparameters comprising learning rate, number of boosting iterations, tree depth, and number of minimum observations were tuned to attain the optimum models. The performance of the models was tested using classification accuracy, Cohen's kappa coefficient (k), sensitivity and specificity. The best-performing model showed a classification accuracy, k, sensitivity and specificity values of 98%, 93%, 1.00 and 0.957 respectively by optimizing model ROC metrics. The most and least influential input variables were MTS and BC, respectively. The partial dependence plots revealed the relationship between the changes in the input variables and model predictions. The findings reveal that GBM can be used to anticipate rockburst and guide decisions about support requirements before mining development.

Calculation of future rainfall scenarios to consider the impact of climate change in Seoul City's hydraulic facility design standards (서울시 수리시설 설계기준의 기후변화 영향 고려를 위한 미래강우시나리오 산정)

  • Yoon, Sun-Kwon;Lee, Taesam;Seong, Kiyoung;Ahn, Yujin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.419-431
    • /
    • 2021
  • In Seoul, it has been confirmed that the duration of rainfall is shortened and the frequency and intensity of heavy rains are increasing with a changing climate. In addition, due to high population density and urbanization in most areas, floods frequently occur in flood-prone areas for the increase in impermeable areas. Furthermore, the Seoul City is pursuing various projects such as structural and non-structural measures to resolve flood-prone areas. A disaster prevention performance target was set in consideration of the climate change impact of future precipitation, and this study conducted to reduce the overall flood damage in Seoul for the long-term. In this study, 29 GCMs with RCP4.5 and RCP8.5 scenarios were used for spatial and temporal disaggregation, and we also considered for 3 research periods, which is short-term (2006-2040, P1), mid-term (2041-2070, P2), and long-term (2071-2100, P3), respectively. For spatial downscaling, daily data of GCM was processed through Quantile Mapping based on the rainfall of the Seoul station managed by the Korea Meteorological Administration and for temporal downscaling, daily data were downscaled to hourly data through k-nearest neighbor resampling and nonparametric temporal detailing techniques using genetic algorithms. Through temporal downscaling, 100 detailed scenarios were calculated for each GCM scenario, and the IDF curve was calculated based on a total of 2,900 detailed scenarios, and by averaging this, the change in the future extreme rainfall was calculated. As a result, it was confirmed that the probability of rainfall for a duration of 100 years and a duration of 1 hour increased by 8 to 16% in the RCP4.5 scenario, and increased by 7 to 26% in the RCP8.5 scenario. Based on the results of this study, the amount of rainfall designed to prepare for future climate change in Seoul was estimated and if can be used to establish purpose-wise water related disaster prevention policies.

A comparison of imputation methods using nonlinear models (비선형 모델을 이용한 결측 대체 방법 비교)

  • Kim, Hyein;Song, Juwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.543-559
    • /
    • 2019
  • Data often include missing values due to various reasons. If the missing data mechanism is not MCAR, analysis based on fully observed cases may an estimation cause bias and decrease the precision of the estimate since partially observed cases are excluded. Especially when data include many variables, missing values cause more serious problems. Many imputation techniques are suggested to overcome this difficulty. However, imputation methods using parametric models may not fit well with real data which do not satisfy model assumptions. In this study, we review imputation methods using nonlinear models such as kernel, resampling, and spline methods which are robust on model assumptions. In addition, we suggest utilizing imputation classes to improve imputation accuracy or adding random errors to correctly estimate the variance of the estimates in nonlinear imputation models. Performances of imputation methods using nonlinear models are compared under various simulated data settings. Simulation results indicate that the performances of imputation methods are different as data settings change. However, imputation based on the kernel regression or the penalized spline performs better in most situations. Utilizing imputation classes or adding random errors improves the performance of imputation methods using nonlinear models.

Evaluation of NDVI Retrieved from Sentinel-2 and Landsat-8 Satellites Using Drone Imagery Under Rice Disease (드론 영상을 이용한 Sentinel-2, Landsat-8 위성 NDVI 평가: 벼 병해 발생 지역을 대상으로)

  • Ryu, Jae-Hyun;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1231-1244
    • /
    • 2022
  • The frequency of exposure of field crops to stress situations is increasing due to abnormal weather conditions. In South Korea, large-scale diseases in representative paddy rice cultivation area were happened. There are limits to field investigation on the crop damage due to large-scale. Satellite-based remote sensing techniques are useful for monitoring crops in cities and counties, but the sensitivity of vegetation index measured from satellite under abnormal growth of crop should be evaluated. The goal is to evaluate satellite-based normalized difference vegetation index (NDVI) retrieved from different spatial scales using drone imagery. In this study, Sentinel-2 and Landsat-8 satellites were used and they have spatial resolution of 10 and 30 m. Drone-based NDVI, which was resampled to the scale of satellite data, had correlation of 0.867-0.940 with Sentinel-2 NDVI and of 0.813-0.934 with Landsat-8 NDVI. When the effects of bias were minimized, Sentinel-2 NDVI had a normalized root mean square error of 0.2 to 2.8% less than that of the drone NDVI compared to Landsat-8 NDVI. In addition, Sentinel-2 NDVI had the constant error values regardless of diseases damage. On the other hand, Landsat-8 NDVI had different error values depending on degree of diseases. Considering the large error at the boundary of agricultural field, high spatial resolution data is more effective in monitoring crops.

Prediction of the Gold-silver Deposits from Geochemical Maps - Applications to the Bayesian Geostatistics and Decision Tree Techniques (지화학자료를 이용한 금${\cdot}$은 광산의 배태 예상지역 추정-베이시안 지구통계학과 의사나무 결정기법의 활용)

  • Hwang, Sang-Gi;Lee, Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.663-673
    • /
    • 2005
  • This study investigates the relationship between the geochemical maps and the gold-silver deposit locations. Geochemical maps of 21 elements, which are published by KIGAM, locations of gold-silver deposits, and 1:1,000,000 scale geological map of Korea are utilized far this investigation. Pixel size of the basic geochemical maps is 250m and these data are resampled in 1km spacing for the statistical analyses. Relationship between the mine location and the geochemical data are investigated using bayesian statistics and decision tree algorithms. For the bayesian statistics, each geochemical maps are reclassified by percentile divisions which divides the data by 5, 25, 50, 75, 95, and $100\%$ data groups. Number of mine locations in these divisions are counted and the probabilities are calculated. Posterior probabilities of each pixel are calculated using the probability of 21 geochemical maps and the geological map. A prediction map of the mining locations is made by plotting the posterior probability. The input parameters for the decision tree construction are 21 geochemical elements and lithology, and the output parameters are 5 types of mines (Ag/Au, Cu, Fe, Pb/Zn, W) and absence of the mine. The locations for the absence of the mine are selected by resampling the overall area by 1 km spacing and eliminating my resampled points, which is in 750m distance from mine locations. A prediction map of each mine area is produced by applying the decision tree to every pixels. The prediction by Bayesian method is slightly better than the decision tree. However both prediction maps show reasonable match with the input mine locations. We interpret that such match indicate the rules produced by both methods are reasonable and therefore the geochemical data has strong relations with the mine locations. This implies that the geochemical rules could be used as background values oi mine locations, therefore could be used for evaluation of mine contamination. Bayesian statistics indicated that the probability of Au/Ag deposit increases as CaO, Cu, MgO, MnO, Pb and Li increases, and Zr decreases.