• 제목/요약/키워드: required response spectrum

검색결과 97건 처리시간 0.021초

설계응답스펙트럼을 고려한 인공지진파의 발생에 관한 연구 (Generation of Artificial Earthquake Ground Motions considering Design Response Spectrum)

  • 정재경;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.145-150
    • /
    • 1999
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This paper shows the process to generate nonstationary artificial earthquake ground motions considering target design response spectrum chosen by ATC14.

  • PDF

상용 유한요소해석 프로그램을 이용한 축류송풍기의 내진해석 (Seismic Analysis of an Axial Blower Using a Commercial FEM Code)

  • 정진태;임형빈;김강성;허진욱
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.181-186
    • /
    • 2002
  • A seismic analysis is one of crucial design procedures of an axial blower used in nuclear power Plants. The blower should be operated even in ar emergency such as an earthquake. The blower should be designed in order to stand against an earthquake. For the seismic analysis, Ive perform the modal analysis and then evaluate the required response spectrum (PRS) from the given floor response spectrum (FRS). A finite element model of the blower is established by using a commercial FEM code of ANSYS. After the finite element modeling. the natural frequencies. the mode shapes and the participation factors are obtained from the modal analysis. The PRS is acquired by a numerical approach on the basis of the principle of mode superposition. We verify the structura safety of the axial blower and confirm the validity of the present seismic analysis results.

다양한 지진에 따른 비선형 직접스펙트럼법의 오차해석 (Error Analysis of Nonlinear Direct Spectrum Method to Various Earthquakes)

  • 강병두;박진화;전대환;김재웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.53-60
    • /
    • 2002
  • It has been recognized that damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the inelastic response is required. The methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. Some codes proposed the capacity spectrum method based on the nonlinear static(pushover) analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method to evaluate seismic Performance of structure, without iterative computations, given the structural initial elastic period and yield strength from the pushover analysis, especially for multi degree of freedom structures. The purpose of this paper is to investigate accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters.

  • PDF

고저항 지락사고 검출을 위한 신호처리 방법에 관한 연구 (A Study On The Methods Of Signal Processing For High Impedance Fault Detection)

  • 이성환;우천희;강신준;우광방;이진;김상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.156-158
    • /
    • 1993
  • This paper presents several techniques of power spectrum estimation for high impedance fault detection. High impedance faults are those faults with current too low to be reliably cleared by conventional overcurrent protection. So power spectrum estimation is required. AR and MA techniques require optimal order for good performance of power spectrum estimation because these techniques are unstable for order selection. ARMA and Extended techniches are stable for order selection and have very sharp response. So ARMA and Extended Prony techniques are suitable for our purpose.

  • PDF

내진에 대한 Plant Control Panel 의 구조적 건전성 평가 (Evaluation of Structural Integrity of A Plant Control Panel under Seismic)

  • 이흥식;김명구;조종두
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.958-961
    • /
    • 2004
  • This paper presents a plant control panel model for the analysis. Seismic qualification analysis for the plant control panel is carried out to confirm the structural integrity under the seismic conditions represented by required response spectra(RRS). For the analysis finite element method(FEM) is used. And mode combinations are adopted to obtain the reliability of the spectrum analysis. The analysis results shows that the plant control panel system is designed as a dynamically rigid assembly, without any resonance frequency below 33Hz. The calculated stress of the plant control panel system is much less than yield stress of used steel.

  • PDF

Modal rigidity center: it's use for assessing elastic torsion in asymmetric buildings

  • Georgoussis, George K.
    • Earthquakes and Structures
    • /
    • 제1권2호
    • /
    • pp.163-175
    • /
    • 2010
  • The vertical axis through the modal center of rigidity (m-CR) is used for interpreting the code torsional provisions in the design of eccentric multi-story building structures. The concept of m-CR has been demonstrated by the author in an earlier paper and the particular feature of this point is that when the vertical line of the centers of mass at the floor levels is passing through m-CR, minimum base torsion is developed. For this reason the aforesaid axis is used as reference axis for implementing the code provisions required by the equivalent static analysis. The study examines uniform mixed-bent-type multistory buildings with simple eccentricity, ranging from torsionally stiff to torsionally flexible systems. Using the results of a dynamic response spectrum analysis as a basis for comparisons, it is shown that the results of the code static design are on the safe side in torsionally stiff buildings, but unable to predict the required strength of bents on the stiff side of systems with a predominantly torsional response. Suggestions are made for improving the code provisions in such cases.

Structural safety redundancy-based design method for structure with viscous dampers

  • Hao, Linfei;Zhang, Ruifu
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.821-840
    • /
    • 2016
  • A simple design process is proposed for supplemental viscous dampers based on structural safety redundancy. In this process, the safety redundancy of the primary structure without a damper is assessed by the capacity and response spectra. The required damping ratio that should be provided by the supplemental dampers is estimated by taking the structural safety redundancy as a design target. The arrangement of dampers is determined according to the drift distribution obtained by performing pushover analysis. A benchmark model is used to illustrate and verify the validity of this design process. The results show that the structural safety redundancy of the structure provided by the viscous dampers increases to approximately twice that of the structure without a damper and is close to the design target. Compared with the existing design methods, the proposed process can estimate the elastic-plastic response of a structure more easily by using static calculation, and determine the required damping ratio more directly without iterative calculation or graphical process. It can be concluded that the proposed process is simple and effective.

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (III) - 설계응답스펙트럼 개선방법 (Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (III) - Modification of Desing Response Specra)

  • 윤종구;김동수;방은석
    • 한국지진공학회논문집
    • /
    • 제10권2호
    • /
    • pp.63-71
    • /
    • 2006
  • 동반논문(II-지반분류 개선방법)에서는 지반의 고유주기를 기준으로 지반을 분류하는 방법이 국내 지반조건에 적합한 지반분류 방법으로 제시하였다. 그러나, 지반분류 방법을 개선하여도 해석결과의 평균 스펙트럼 가속도 값과 재산정된 응답스펙트럼과 차이가 나타나는 부분이 존재한다. 이는 설계응답스펙트럼을 작성에 필요한 증폭계수를 계산하는 방법을 변경해야 해결할 수 있다. 본 논문에서는 국내 지반조건에 적합하도록 증폭계수를 재산정하기 위한 적분구간 변경에 대하여 검토하였다. 검토 결과 장주기 영역의 증폭계수 $F_v$의 적분구간은 현재 주기 0.4초${\sim}$2.0초에서 주기 0.4초${\sim}$1.5초로 변경할 경우 해석결과의 평균 스펙트럼 가속도 값과 설계응답스펙트럼이 비교적 잘 일치하는 결과를 얻을 수 있었고, 기존의 방법보다 국내 지반특성에 더 적합한 설계응답스펙트럼을 작성할 수 있었다.

역량스펙트럼 방법을 이용한 피뢰기의 지진취약도 해석 (Seismic Fragility Analysis of Lightning Arrester using Capacity Spectrum Method)

  • 김광전;송종걸
    • 한국전산구조공학회논문집
    • /
    • 제27권4호
    • /
    • pp.255-263
    • /
    • 2014
  • 본 연구에서 피뢰기의 지진취약도 해석은 역량스펙트럼 방법을 이용하여 수행하였다. 많은 구조부재를 가진 구조물의 지진취약도 해석은 수십 혹은 수백 개의 지진하중에 대한 비탄성 지진응답을 계산하는 것이 요구되기 때문에 역량스펙트럼 방법과 같은 간단한 방법이 응답이력해석 보다 적합하다. 일반적으로 역량스펙트럼 방법에 의해 평가된 지진응답의 정확성은 응답이력해석에 의한 결과의 정확성 보다 떨어진다. 역량스펙트럼 방법의 정확성을 향상시키기 위하여 등가단자유도 방법과 성능점 계산기법이 적용되었다. 지진취약도에 대한 지진에 대한 지반효과를 평가하기 위하여 60개의 다른 지반종류의 지반운동을 입력지진으로 선정하여 사용하였다. 역량스펙트럼 방법과 응답이력해석에 의한 지진취약도 곡선의 비교로부터 역량스펙트럼 방법에 의한 지진취약도 곡선이 응답이력해석에 의한 지진취약도 곡선과 상당히 유사함을 알 수 있었다. 또한, 피뢰기의 주된 지진에 의한 파괴모드는 부싱의 파손임을 알 수 있었다.