• Title/Summary/Keyword: repulsive

Search Result 270, Processing Time 0.031 seconds

Adsorption of Colloidal Silica Particles on a Glass Substrate

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1011-1016
    • /
    • 2002
  • Colloidal particles of silica (100 nm in size) were electrostatically dispersed and adsorbed on a glass substrate coated with silica sol or alumina sol. Stability of the suspensions and microstructure of the adsorbed particle layers were discussed in terms of total potential energies between the particles and the substrate. Well-dispersed suspension resulted in a layer with densely packed and regularly arranged particles, whereas less stable suspension resulted in a porous layer with loosely packed and irregularly arranged particles. Despite repulsive interactions between the particles and the substrate coated with silica sol, the observed adsorption can be attributed to chemical bonds formed at the interface between the particle and silica sol. In contrast, the adsorption of the particles on the substrate coated with alumina sol formed a layer with strongly adhered and densely packed particles, due to large attractive interactions between the particles and alumina sol.

Flexible and Scalable Formation for Unicycle Robots

  • Kim Dong Hun;Lee Yong Kwun;Kim Sung-Ill;Shin Wee-Jae;Lee Hyun-Woo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.519-522
    • /
    • 2005
  • This paper presents a self-organizing scheme for multi-agent swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, unicycle robots self-organize to flock and arrange group formation through attractive and repulsive forces among themselves. It is also shown how localized distributed controls are utilized throughout group behaviors such as formation and migration. In the paper, the proposed formation ensures safe separation and good cohesion performance among the robots. Several examples show that the proposed method for group formation performs the group behaviors such as reference path following, obstacle avoidance and flocking, and the formation characteristics such as flexibility and scalability, effectively.

  • PDF

Unbound Protein-Protein Docking Using Conformational Space Annealing

  • Lee, Kyoung-Rim;Joo, Kee-Hyoung;Lee, Joo-Young
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.294-299
    • /
    • 2005
  • We have studied unbound docking for 12 protein-protein complexes using conformational space annealing (CSA) combined along with statistical pair potentials. The CSA, a powerful global optimization tool, is used to search the conformational space represented by a translational vector and three Euler amgles between two proteins. The energy function consists of three statistical pair-wise energy terms; one from the distance-scaled finite ideal-gas reference state (DFIRE) approach by Zhou and the other two derived from residue-residue contacts. The residue-residue contact terms describe both attractive and repulsive interactions between two residues in contact. The performance of the CSA docking is compared with that of ZDOCK, a well-established protein-protein docking method. The results show that the application of CSA to the protein-protein docking is quite successful, indicating that the CSA combined with a good scoring function is a promising method for the study of protein-protein interaction.

  • PDF

Development of an Impact Force Measurement Device with an Attached Strain Gauge (스트레인게이지가 부착된 충격력 측정 장비 개발)

  • Jeong, Ik-Su
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.243-251
    • /
    • 2012
  • The purpose of this study was to develop an impact force measurement device in order to facilitate the acquisition of quantitative data for the analysis of various sporting events. The device was designed to include cylindrical aluminum supports of 220 mm diameter, which allows mounting and dismounting of the device on walls and frames. In addition, a hard sponge for impact absorption, as well as 4 springs, were attached to the plate. Both were attached to prevent psychological variables and injuries. When a subject applies force on the device, accurate data about the maximum repulsive force is acquired in real time, with a lag of only 0.001 s. The device was calibrated in four steps: (1) increase, (2) increase, (3) increase-decrease, and (4) increase-decrease. The maximum relative expanded uncertainty was 0.166%, indicating that the impact force measurement was sufficiently reliable. The proposed device can be applied to various sporting situations and is expected to be useful for studying kinetics.

The effect of surface charge balance on thermodynamic stability and kinetics of refolding of firefly luciferase

  • Khalifeh, Khosrow;Ranjbar, Bijan;Alipour, Bagher Said;Hosseinkhani, Saman
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • Thermodynamic stability and refolding kinetics of firefly luciferase and three representative mutants with depletion of negative charge on a flexible loop via substitution of Glu by Arg (ER mutant) or Lys (EK mutant) as well as insertion of another Arg in ER mutants (ERR mutant) was investigated. According to thermodynamic studies, structural stability of ERR and ER mutants are enhanced compared to WT protein, whereas, these mutants become prone to aggregation at higher temperatures. Accordingly, it was concluded that enhanced structural stability of mutants depends on more compactness of folded state, whereas aggregation at higher temperatures in mutants is due to weakening of intermolecular repulsive electrostatic interactions and increase of intermolecular hydrophobic interactions. Kinetic results indicate that early events of protein folding are accelerated in mutants.

Feasibility Study of Coil Gun Type Actuator for High Voltage Circuit Breaker (초고압 차단기용 코일건 타입 조작기의 기술적 타당성 검토)

  • Cho, Chu-Hyun;Lee, Hong-Sik;Kim, Seog-Whan;Kim, Young-Bae;Lee, Woo-Young;Kim, Hong-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.367-372
    • /
    • 2006
  • A novel coil gun type actuator has been proposed and tested for its possibility as an actuator for a high voltage circuit breaker by experimental method. The 20kJ capacitor bank with the electrolytic condensers was charged up to 500V and discharged to a couple of 100 turn coils connected with parallel through a thyristor switch. The repulsive force between coil and the actuator made by copper conductor of 20kg reached up to 23,000 N, and over 800J of energy was transferred to the kinetic energy of the conductor. The experimental results showed that the coil gun type actuator has a good possibility for the high voltage circuit breaker.

Survey on Top-k Query Processing Considering Attractive and Repulsive Dimensions (선호 차원과 배척 차원을 모두 고려한 top-k 질의 처리 연구 조사)

  • Lee, Juneyoung;Seo, In;Choi, Dong-june;Kim, Kyoungmin;Kim, Dongwon
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.804-807
    • /
    • 2017
  • Top-k 질의란 주어진 조건을 만족하면서 높은 점수를 가진 상위 k개의 레코드를 요청하는 질의이다. 개체의 점수를 계산하는 랭킹함수가 단조함수가 아닐 경우 발생하는 기술적 어려움을 해결하기 위한 여러 연구가 있었다. 본 논문에서는 이들 중 각 차원이 선호 차원과 배척 차원으로 나뉘는 비단조 랭킹함수를 효율적으로 처리하는 기존의 top-k 질의 처리 기법들을 소개하고 비교한다.

A study on the stamp-resist interaction mechanism and atomic distribution in thermal NIL process by molecular dynamics simulation (분자동역학 전산모사를 이용한 나노임프린트 리소그래피 공정에서의 스탬프-레지스트 간의 상호작용 및 원자분포에 관한 연구)

  • Yang, Seung-Hwa;Cho, Maeg-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.343-348
    • /
    • 2007
  • Molecular dynamics study of thermal NIL (Nano Imprint Lithography) process is performed to examine stamp-resist interactions. A layered structure consists of Ni stamp, poly-(methylmethacrylate) thin film resist and Si substrate was constructed for isothermal ensemble simulations. Imposing confined periodicity to the layered unit-cell, sequential movement of stamp followed by NVT simulation was implemented in accordance with the real NIL process. Both vdW and electrostatic potentials were considered in all non-bond interactions and resultant interaction energy between stamp and PMMA resist was monitored during stamping and releasing procedures. As a result, the stamp-resist interaction energy shows repulsive and adhesive characteristics in indentation and release respectively and irregular atomic concentration near the patterned layer were observed. Also, the spring back and rearrangement of PMMA molecules were analyzed in releasing process.

  • PDF

Design of a Step Motor with a Passive Magnetic Bearing (수동형 마그네틱 베어링이 결합된 스텝 모터의 설계)

  • Kwak, Ho-Seong;Choi, Dong-Hoon;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1201-1207
    • /
    • 2006
  • This paper introduces a step motor with a passively levitated rotor which comprises a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the active magnetic bearing technology, the proposed motor has a very simple structure and operating principle. For the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. Halbach array is used to increase the bearing stiffness. On the other hand, its rotation principle is just the same with that of conventional motors. In this paper, we introduce the design scheme to avoid the flux interference possibly produced by electromagnets and permanent magnets, and show some results of FEM analysis to predict the performance of the proposed motor.

Dynamic Characteristics of Eddy Current Damper (와전류 댐퍼의 동적특성)

  • Kwag, Dong-Gi;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.947-951
    • /
    • 2007
  • This paper is concerned with a new concept for the damper without neither a coil spring nor fluid. The new damper concept consists of the permanent magnets and the cylinder of the conducting material. The opposite pole magnets produces the repulsive forces and this is substituted for the coil spring. The relative motion between the magnets and conducting cylinder produces eddy currents thus resulting in the electromagnetic force, which turns out to be the damping force thus and is substituted for a damping fluid. This damper is called the eddy current damper(ECD). The important advantage of the proposed ECD is that it does not require the damping fluid and any external power and is non-contacting and relatively insensitive to temperature. In the present study, the proposed ECD was constructed and experiments were performed to investigate its dynamic characteristics. The experiments shows that the proposed ECD has the excellent damping ability.

  • PDF