• Title/Summary/Keyword: reprogramming

Search Result 216, Processing Time 0.046 seconds

Inhibition of Polo-like Kinase 1 Prevents the Male Pronuclear Formation Via Alpha-tubulin Recruiting in In vivo-fertilized Murine Embryos

  • Moon, Jeonghyeon;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.229-235
    • /
    • 2018
  • Polo-like kinase 1 (Plk1) has been known to be a critical element in cell division including centrosome maturation, cytokinesis and spindle formation in somatic, cancer, and mammalian embryonic cells. In particular, Plk1 is highly expressed in cancer cells. Plk1 inhibitors, such as BI2536, have been widely used to prevent cell division as an anticancer drug. In this study, the fertilized murine oocytes were treated with BI2536 for 30 min after recovery from the oviduct to investigate the effect of down-regulation of Plk1 in the in vivo-fertilized murine embryos. Then, the localization and expression of Plk1 was observed by immunofluorescence staining. The sperm which had entered into the oocyte cytoplasm did not form male pronuclei in BI2536-treated oocytes. The BI2536-treated oocytes showed significantly lower expression of Plk1 than non-treated control group. In addition, alpha-tubulin and Plk1 gathered around sperm head in non-treated oocytes, while BI2536-treated oocytes did not show this phenomenon. The present study demonstrates that the Plk1 inhibitor, BI2536, hinders fertilization by inhibiting the formation of murine male pronucleus.

Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway

  • Soo Jin Park;Joo-Hyun Kim;Sangtaek Oh;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.114-122
    • /
    • 2023
  • A family of signal transduction pathways known as wingless type (Wnt) signaling pathways is essential to developmental processes like cell division and proliferation. Mutation in Wnt signaling results in a variety of diseases, including cancers of the breast, colon, and skin, metabolic disease, and neurodegenerative disease; thus, the Wnt signaling pathways have been attractive targets for disease treatment. However, the complicatedness and large involveness of the pathway often hampers pinpointing the specific targets of the metabolic process. In our current study, we investigated the differential metabolic regulation by the overexpression of the Wnt signaling pathway in a timely-resolved manner by applying high-throughput and un-targeted metabolite profiling. We have detected and annotated 321 metabolite peaks from a total of 36 human embryonic kidney (HEK) 293 cells using GC-TOF MS and LC-Orbitrap MS. The un-targeted metabolomic analysis identified the radical reprogramming of a range of central carbon/nitrogen metabolism pathways, including glycolysis, TCA cycle, and glutaminolysis, and fatty acid pathways. The investigation, combined with targeted mRNA profiles, elucidated an explicit understanding of activated fatty acid metabolism (β-oxidation and biosynthesis). The findings proposed detailed mechanistic biochemical dynamics in response to Wnt-driven metabolic changes, which may help design precise therapeutic targets for Wnt-related diseases.

Comprehensive overview of the role of mitochondrial dysfunction in the pathogenesis of acute kidney ischemia-reperfusion injury: a narrative review

  • Min-Ji Kim;Chang Joo Oh;Chang-Won Hong;Jae-Han Jeon
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.2
    • /
    • pp.61-73
    • /
    • 2024
  • Acute kidney ischemia-reperfusion (IR) injury is a life-threatening condition that predisposes individuals to chronic kidney disease. Since the kidney is one of the most energy-demanding organs in the human body and mitochondria are the powerhouse of cells, mitochondrial dysfunction plays a central role in the pathogenesis of IR-induced acute kidney injury. Mitochondrial dysfunction causes a reduction in adenosine triphosphate production, loss of mitochondrial dynamics (represented by persistent fragmentation), and impaired mitophagy. Furthermore, the pathological accumulation of succinate resulting from fumarate reduction under oxygen deprivation (ischemia) in the reverse flux of the Krebs cycle can eventually lead to a burst of reactive oxygen species driven by reverse electron transfer during the reperfusion phase. Accumulating evidence indicates that improving mitochondrial function, biogenesis, and dynamics, and normalizing metabolic reprogramming within the mitochondria have the potential to preserve kidney function during IR injury and prevent progression to chronic kidney disease. In this review, we summarize recent advances in understanding the detrimental role of metabolic reprogramming and mitochondrial dysfunction in IR injury and explore potential therapeutic strategies for treating kidney IR injury.

Optimization of Electrofusion Condition for the Production of Korean Cattle Somatic Cell Nuclear Transfer Embryos

  • Kim, Se-Woong;Kim, Dae-Hwan;Jung, Yeon-Gil;Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • This study was designed to determine the effect of electric field strength, duration and fusion buffer in fusion parameters on the rate of membrane fusion between the somatic cell and cytoplast for Korean cattle (HanWoo) somatic cell nuclear transfer (SCNT) procedure. Following electrofusion, effect of 5 or $10\;{\mu}M$ $Ca^{2+}$-ionophore of activation treatment on subsequent development was also evaluated. Cell fusion rates were significantly increased from 23.1% at 20 V/mm to 59.7% at 26 V/mm and 52.9% at 27 V/mm (p<0.05). Due to higher cytoplasmic membrane rupture or cellular lysis, overall efficiency was decreased when the strength was increased to 30 V/mm (18.5%) and 40 V/mm (6.3%) and the fusion rate was also decreased when the strength was at 25 V/mm or below. The optimal duration of electric stimulation was significantly higher in $25\;{\mu}s$ than 20 and $30\;{\mu}s$ (18.5% versus 9.3% and 6.3%, respectively, p<0.05). Two nonelectrolyte fusion buffers, Zimmermann's (0.28 M sucrose) and 0.28 M mannitol solution for cell fusion, were used for donor cell and ooplast fusion and the fusion rate was significantly higher in Zimmermann's cell fusion buffer than in 0.28 M mannitol (91.1% versus 48.4%, respectively, p<0.05). The cleavage and blastocyst formation rates of SCNT bovine embryos activated by $5\;{\mu}M$ $Ca^{2+}$-ionophore was significantly higher than the rates of the embryos activated with $10\;{\mu}M$ of $Ca^{2+}$-ionophore (70.0% versus 42.9% and 22.5% versus 14.3%, respectively; p<0.05). This result is the reverse to that of parthenotes which shows significantly higher cleavage and blastocyst rates in $10\;{\mu}M$ $Ca^{2+}$-ionophore than $5\;{\mu}M$ counterpart (65.6% versus 40.3% and 19.5% versus 9.7%, respectively; p<0.05). In conclusion, SCNT couplet fusion by single pulse of 26 V/mm for $25\;{\mu}s$ in Zimmermann's fusion buffer followed by artificial activation with $5\;{\mu}M$ $Ca^{2+}$-ionophore are suggested as optimal fusion and activation methods in Korean cattle SCNT protocol.

G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells

  • Choi, Hye Yeon;Saha, Subbroto Kumar;Kim, Kyeongseok;Kim, Sangsu;Yang, Gwang-Mo;Kim, BongWoo;Kim, Jin-Hoi;Cho, Ssang-Goo
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.68-80
    • /
    • 2015
  • G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of self-renewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.

Cell Cycle and Apoptosis of Bovine Fetal Fibroblast Cells following Different Activation Treatments

  • Bhak, Jong-Sik;Choe, Sang-yong
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.37-37
    • /
    • 2002
  • The success of embryo cloning depends on numerous factors; interaction between recipient ooplasm and donor nucleus, nuclear reprogramming, oocyte activation, and donor cell cycle and type. In this study, the cell cycle and apoptosis of bovine fetal fibroblast as a donor cell for embryo cloning were evaluated following different activation treatments. (omitted)

  • PDF

Design of a Fault-tolerant Embedded Controllerfor Rail-way Signaling Systems

  • Cho, Yong-Gee;Lim, Jae-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.68.4-68
    • /
    • 2002
  • $\textbullet$ This report presents an implementation a set of reusable software components which use of fault-tolerance embedded controller for railway signalling systems. These components can be used in real-time applications without application reprogramming. $\textbullet$ This library runs under VxWorks operating system and is oriented on real-time embedded systems. The library includes fault detection, fault containment, checkpointing and recovery components. $\textbullet$ The library enables to support high-speed response to fault occurrence in application software. Garbage collector together with VxWorks Watchdog provides both dead tasks detection and useless resources removing to avoid an overflow. Control flow...

  • PDF

Energy-Efficient Reprogramming of Sensor Networks using Multi-round Rsync Algorithm (Multi-round Rsync 알고리즘을 이용한 에너지 효율적인 센서 네트워크 리프로그래밍 기법)

  • Ku, Won-Mo;Park, Yong-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10d
    • /
    • pp.421-425
    • /
    • 2006
  • 본 논문에서는 TinyOS 기반의 센서 네트워크에 대한 리프로그래밍을 에너지 효율적으로 수행하기 위한 매커니즘을 제안한다. 베이스 스테이션에서 센서노드에게 프로그램 전체를 보내는 대신 이전 버전과의 차이인 델타를 생성해서 전송할 때 Multi-round Rsync 알고리즘을 적용해 델타 파일의 크기를 최대한 줄이는 기법과 업데이트가 불필요한 플래시메모리 페이지에 대한 업데이트를 방지하기 위한 페이지 맵 기법을 통해 Rsync만을 사용하는 기존 방식보다 최대 30% 이상 에너지를 절감할 수 있음을 확인하였다.

  • PDF