• Title/Summary/Keyword: reproductive hormones

Search Result 196, Processing Time 0.018 seconds

Transforming Growth Factor-$\beta$ is a Possible Paracrine Mediator in the Human Endometrial Decidualization (인간자궁내막의 탈락막화 (Decudualization)에 있어서 TGF-$\beta$ (Transforming Growth Factor-$\beta$)의 역할)

  • Park, Dong-Wook;Choi, Dong-Soon;Kim, Mi-Ran;Hwang, Kyung-Joo;Jo, Mi-Yeong;Ahn, Seong-Hee;Min, Churl-K.;Ryu, Hee-Sug
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.65-75
    • /
    • 2003
  • Objectives: To investigate the role of TGF (Transforming growth factor-$\beta$) involved in the paracrinic communication during decidualization between UEC (uterine epithelial cells) and USC (uterine stromal cells), we have employed a co-culture system composed of human endometrial epithelial and stromal cells in defined hormonal conditions. Design: In the co-culture, endometrial epithelial cells cultured in the matrigel-coated cell culture insert are seeded on top of the endometrial stromal cells cultured within a collagen gel. The co-culture was maintained for 48 hours under the following hormonal conditions: progesterone dominant condition (100 nM P4 and 1 nM E2) or estrogen-dominant condition (100 nM E2 and 1 nM P4). 10 ng/ ml HGF and/or 10 ng/ml TGF-$\beta$1 are added. Methods: RT-PCR is utilized to detect mRNAs quantitatively. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining are utilized to detect proteins in the tissue. Results: Prolactin mRNA is expressed in the co-cultured stromal cells under the progesterone dominant condition. TGF-$\beta$1 and its receptors are expressed in both the co-cultured epithelial and stromal cells irrespective of the steroid present, which is in contrast with no or negligible expression of TGF-$\beta$1 or its receptor in cells separately cultured. Both estrogen and progesterone significantly elevate the concentration of hepatocyte growth factor (HGF) in the conditioned medium of the co-culture with the value of 4, 325 pg/ml in E2-dominant and 2, 000 pg/ml in P4-dominant condition compare to 150 pg/ml in no hormone. In separately cultured stromal cells, administration of HGF induces the expression of TGF receptor 1 in both hormonal conditions, but induction of TGF receptor 2 is only manifest in the P4-dominant condition. Administration of TGF-$\beta$ and HGF directly induce the decidualization marker prolactin mRNA in separately cultured stromal cells. Conclusion: It is likely that steroid hormones induces prolactin mRNA indirectly by promoting the cell to cell communication between the stromal and the epithelial cells. TGF-$\beta$ and HGF are two possible paracrine mediators in the human endometrial decidualization.

Effects of Follicle Stimulating Hormone and Human Chorionic Gonadotrophin on the In Vitro Maturation of Canine Oocytes

  • Kim, Min-Kyu;Oh, Hyun-Ju;Jang, Goo;Hong, So-Gun;Park, Jung-Eun;Kim, Hye-Jin;Lee, Hyung-Suk;Kim, Sang-Cheol;Kang, Sung-Keun;Lee, Byeong-Chun
    • Reproductive and Developmental Biology
    • /
    • v.31 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • The present study investigated the effects of follicle stimulating hormone (FSH) and human chorionic gona-dotrophin (hCG) on the nuclear maturation of canine oocytes. Oocytes were recovered from mongrel female ovaries in various reproductive states; follicular, luteal or anestrous stage. Oocytes were cultured in sserum-free tissue culture medium (TCM)-199 supplemented with various concentrations of FSH (Exp. 1: 0, 0.5, 1.0 or 10 IU) or hCG (Exp.2:0, 0.5, 1.0 or 10 IU) or both (Exp. 3:1 IU FSH +1 IU hCG) for 72 hr to determine the effective concentration of these hormones, and to examine their combined effect. After maturation culture, oocytes were denuded in PBS containing 0.1% (w/v) hyaluronidase by gentle pipetting. The denuded oocytes were stained with $1.9\;{\mu}M$. Hoechst 33342 in glycerol and the nuclear state of oocytes was evaluated under UV light. More (p<0.05) oocytes matured to MII stage when follicular stage oocytes were supplemented with 1 IU FSH (6.2%) compared with the control, 0.1 or 10.0 IU FSH (0 to 1.2%). Significantly higher (p<0.05) maturation rate to MII stage was observed in follicular stage oocytes supplemented with 1.0 IU hCG (7.2%) compared with the control or other hCG supplemented groups (0 to 1.5%). However, the combination of FSH and hCG did not improve the nuclear maturation rate of canine oocyte (2.4 %) compared with FSH (6.2%) and hCG alone (7.2%). In conclusion, FSH or hCG alone significantly increased the maturation of canine oocytes to MII stage.

Antrum Formation and Growth In Vitro of Mouse Pre-antral Follicles Cultured in Media without Hormones (호르몬 무 첨가 배양액에서 생쥐 Pre-antral Follicles의 체외성장과 난포강 형성)

  • Park, Kee-Sang;Kim, Ju-Hwan;Lee, Taek-Hoo;Song, Hai-Bum;Chun, Sang-Sik
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.2
    • /
    • pp.79-86
    • /
    • 2001
  • Objective: Mouse pre-antral follicles require the addition of gonadotropins (Gns) to complete maturation and ovulation of oocyte and antrum formation in vitro. However, we tried examination of in vitro growth of mouse pre-antral follicles in medium without Gns and/or phygiological factors. And also, pre-antral follicles were isolated from ovaries by mechanical method. Our present studies were conducted to evaluate on the growth of follicles and intra-follicular oocytes and antrum formation in vitro of mouse pre-antral follicles in two different media. Methods: Pre-antral follicles ($91{\sim}120{\mu}m$) were isolated mechanically by fine 30G needles not using enzymes from ovaries of 3-6 week-old female ICR mice. Isolated pre-antral follicles were cultured in $20{\mu}l$ droplets of TCM (n=17; follicles: $107.8{\pm}1.58{\mu}m$; oocytes: $57.9{\pm}1.2{\mu}m$) or MEM (n=12; follicles: $109.3{\pm}2.53{\mu}m$; oocytes: $55.4{\pm}1.6{\mu}m$) under mineral oil on the 60 mm culture dish. All experimental media was supplemented with 10% FBS without Gns and/or physiological factors. Pre antral follicles were individually cultured for 8 days. Antram formation and growth of pre-antral follicles and intra-follicular oocytes were evaluated using precalibrated ocular micrometer at X200 magnifications during in vitro culture. Results were analyzed using combination of Student's t-test and Chi-square, and considered statistically significant when p<0.05. Results: Antrum formation had started in two culture media on day 2. On day 8, antrum formation had occurred in 58.3% of pre-antral follicles cultured in DMEM, but only in 23.5% of those cultured in TCM (p=0.0364). Growth of pre-antral follicles and intra-follicular oocytes were observed on day 4 and 8. On day 4, follicular diameter was similar (p=0.1338) in TCM ($119.4{\pm}2.58{\mu}m$) and MEM ($125.4{\pm}4.52{\mu}m$). However, on day 8, diameters of pre-antral follicles cultured in MEM ($168.9{\pm}17.29{\mu}m$) were significantly bigger (p=0.0248) than that in TCM ($126.7{\pm}4.28{\mu}m$). On day 4 and 8, diameters of intra-follicular oocytes were similar in TCM ($67.1{\pm}1.3$ and $72.4{\pm}0.9{\mu}m$) and MEM ($65.2{\pm}1.7$ and $73.3{\pm}1.5{\mu}m$), respectively. Conclusion: We can conform that medium without Gns and/or physiological factors can be used for in vitro antrum formation and growth of pre-antral follicles and intra-follicular oocytes in mouse. In conclusion, MEM supplemented with FBS can be used for growth in vitro of mouse pre-antral follicles isolated mechanically.

  • PDF

Effect of Steroid Hormones on Expression and Localization of Aquaporin-4, -5 and -8 Genes in Mouse Uterine Endometrium (스테로이드 호르몬이 생쥐 자궁내막에서 Aquaporin-4, -5와 -8 유전자의 발현과 존재부위에 미치는 영향)

  • Kang, Soo-Man;Kang, Han-Seung;Gye, Myung-Chan;Shin, Hyeon-Sang;Lee, Ji-Won;Lee, Sung-Eun;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.2
    • /
    • pp.119-131
    • /
    • 2004
  • 연구 목적: 난소에서 분비되는 스테로이드 호르몬인 에스트로젠과 프로게스테론은 포유동물의 생식기관 발달과 정상적인 생식 기능, 수정과 배아의 착상에 중요한 역할을 한다. 특히 에스트로젠은 자궁내액을 내강으로 분비하여 자궁부종 기작에 중요한 역할을 한다. 자궁내액은 정자의 수정능력 획득과 착상전 배아의 발달에 매우 중요하다. Aquaporin (AQP)은 막관통 물수송 단백질로서 여러 조직에 넓게 분포되어 있으며, 세포간 또는 상피세포간 물의 이동에 중요한 역할을 한다. 본 연구에서는 생쥐 자궁에서 스테로이드 호르몬에 의해 조절되는 자궁내액의 이동에 AQP 유전자가 관여하는지를 알아보았다. 연구 재료 및 방법: 난소 절제술을 시행한 생쥐에 스테로이드 호르몬을 피하주사하고 6, 12, 24시간 간격으로 자궁조직을 적출하였다. 대조군은 sesame oil만을 주사한 후 6시간째에 수획한 자궁조직을 사용하였으며, 실험군은 시간대별과 스테로이드 처리별로 채취한 자궁조직에서 역전사중합효소반응을 수행하였다. 역전사중합효소반응을 통해 막관통 단백질인 AQP-4, -5, -8 mRNA의 발현양상을 살펴보았다. 또한 mRNA의 위치를 살펴보기 위해 laser microdissection을 이용하여 RT-PCR을 수행하였다. 마지막으로 자궁조직내에서의 단백질 발현 부위를 관찰하기 위해 면역조직화학염색을 실시하였다. 결 과: AQP-4, -5, -8 mRNA은 프로게스테론을 처리한 군보다 에스트로젠을 처리한 군에서 많이 발현되었으며, 에스트로젠을 주사한 지 6시간째 발현정도를 대조군과 비교할 때 AQP-4, -5, -8 mRNA가 각각 7.9배, 2.8배, 3.8배로 나타났다. AQP-4, -5, -8 mRNA는 간충조직보다 자궁내 상피조직에서 스테로이드 호르몬의 영향을 받아 발현양상의 차이가 나타났으며, 주로 에스트로젠의 영향을 받아 발현이 증가하였다. AQP-4 단백질은 에스트로젠을 24시간 처리한 후 프로게스테론을 처리한 군의 자궁내 상피조직에서 많이 발현되었으며, AQP-5와 -8 단백질은 에스트로젠을 처리한 군의 자궁내 상피조직에서 발현이 증가하였다. 결 론: 이상의 결과를 통해 AQP-4, -5, -8은 주로 에스트로젠에 의해 자궁내 상피세포에서 발현이 증가되는 것으로 보아 에스트로젠의 영향하에 일어나는 자궁내액의 이동으로 인한 자궁부종기작에 이동통로로서 관여하는 것으로 사료된다.

Studies on Steroid Hormone Concentration during the Estrous Cycle in the MediKinetics Micropig®

  • Seong, Hun-Ki;Seo, Kyeong-Seok;Kim, Jeong-Su;Her, Chang-Gi;Kang, Myung-Hwa;Sim, Bo-Woong;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In all mammalian species, progesterone is essential to both the preparation for, and maintenance of, pregnancy. The $20{\alpha}$-hydroxysteroid dehydrogenase ($20{\alpha}$-HSD) enzyme predominantly converts progesterone into its biologically inactive form $20{\alpha}$-hydroxyprogesterone, thereby regulating its activity. Thus, to directly assess sexual maturation in the MediKinetics $micropig^{(R)}$, we analyzed the concentration of the steroid hormones progesterone and estradiol during the estrous cycle. Our results show that the progesterone level exhibited by the analyzed $micorpig^{(R)}$ was low at the beginning of the estrous cycle, and then abruptly increased to $30.32{\pm}10.0ng/mL$ and $46.37{\pm}11.0ng/mL$ by days 9 and 11 of the cycle, respectively. It reached the highest level $55.87{\pm}3.5ng/mL$ on day 13 of the estrous cycle, before decreasing to $46.58{\pm}13.1ng/mL$ and $10.0{\pm}7.6ng/mL$ by days 15 and 17 of the cycle, respectively. In contrast, the estradiol level was shown to be highest ($27.13{\pm}11.2ng/mL$) at the initiation of the estrous cycle, after which point it decreased to $13.29{\pm}6.5ng/mL$ and $10.94{\pm}5.9ng/mL$ by days 4 and 5 of the estrous cycle, respectively. By day 17 of the estrous cycle, the estradiol level decreased to $4.13{\pm}7.6ng/mL$. We anticipate that these results will provide useful information to enable the study of human ovulation and reproductive physiology using the MediKinetics $micoripig^{(R)}$ as a model system. We recommend further investigation to elucidate the functional mechanisms underlying the regulation of sexual maturation in the MediKinetics $micropig^{(R)}$.

The Effect of Interferon-${\alpha}$ and bFGF on the Proliferation of Cultured Leiomyoma and Myometrial Cells (자궁근종과 자궁평활근 세포분열에 있어 Interferon-${\alpha}$ 및 basic Fibroblast Growth Factor (bFGF)의 효과)

  • Lee, B.S.;Park, J.S.;Kim, J.Y.;Bae, S.W.;Park, K.H.;Cho, D.J.;Lee, K.d;Kim, J.W.;Song, C.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.3
    • /
    • pp.355-359
    • /
    • 1997
  • Leiomyomas, which are the commonest pelvic tumors in women, are originated from myometrial cells. Although the exact initial pathophysiologic event of the leiomyoma is not known, recent evidences suggested that the effects of sex steroid hormones in the process of tumor growth are mediated by local production of growth factors including epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II). If we look at the effects of other cytokines, it was suggested that basic fibroblast growth factor (bFGF) may stimulate the proliferation of myometrial and leiomyomas cells. And it was reported that interferon-${\alpha}$ inhibit the action of bFGF. Therefore, we examined the effect of bFGF and interferon-${\alpha}$ on the proliferation of leiomyoma and myometrial cells. bFGF stimulated the myometrial and leiomyoma cells significantly at the concentration of 1ng/ml (p<0.05) and 5ng/ml (p<0.05). However, Interferon-${\alpha}$ inhibited the cell proliferation of myometrial and leiomyoma cells significantly at the concentration of 100U/ml (p<0.05) and 1000U/ml (p<0.05). And the stimulated effects of bFGF with the various concentration on the myometrial and leiomyoma cells ware inhibited by interferon-${\alpha}$ with 100U/ml. Therefore, we concluded that bFGF may stimulate the myometrial and leiomyoma cell proliferation and interferon-${\alpha}$ may inhibit the myometrial and leiomyoma cell proliferation through blocking the effect of basic fibroblast growth factor.

  • PDF

Understanding of Intrauterine Environment Changes based on Proteomics and Bioinformatics during Estrous Cycle (단백체학과 생물정보학을 이용한 자궁 내 환경의 이해)

  • Lee, Sang-Hee;Lee, Seunghyung
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.621-630
    • /
    • 2019
  • Fertilization is the beginning of a new life that occurs in the female uterine. The female reproductive tract is composed ovary, oviduct, uterine, vagina and cervix, their physiological features are regulated by estrous cycle. Of these, uterine is a main point to establish embryo development and implantation, and intercommunication between embryo and uterine environment is necessary for suitable pregnancy. Endometrium is part of the uterine, its morphology is repetitively changed by hormones, and characteristic of uterine fluid from endometrium is also changed. Recently, massive proteins of endometrium and uterine fluid can be detected according to develop proteomics and bioinformatics and have been accelerated the understanding of the reproductive biology fields. Moreover, the massive protein information is actively studying with deeply studied theory such as sex hormone signal pathway and angiogenesis in mammals. In this paper, we review understanding of endometrium remodeling, uterine gland and fluid during estrous cycle, additionally studies on endometrium and uterine fluid based on proteomics techniques. Lastly, we introduced methods of the protein-protein correlation using bioinformatics tool that interaction with hormone receptors, representative angiogenetic factors and detected proteins using proteomics in endometrium and uterine fluid. This review will be useful to understanding the study on search of new cell mechanism in endometrium and uterine fluid.

Effects of enzymolysis and fermentation of Chinese herbal medicines on serum component, egg production, and hormone receptor expression in laying hens

  • Mei Hong Jiang;Tao Zhang;Qing Ming Wang;Jin Shan Ge;Lu Lu Sun;Meng Qi Li;Qi Yuan Miao;Yuan Zhao Zhu
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.95-104
    • /
    • 2024
  • Objective: In the present study, we aimed to investigate the effects of enzymolysis fermentation of Chinese herbal medicines (CHMs) on egg production performance, egg quality, lipid metabolism, serum reproductive hormone levels, and the mRNA expression of the ovarian hormone receptor of laying hens in the late-laying stage. Methods: A total of 360 Hy-Line Brown laying hens (age, 390 days) were randomly categorized into four groups. Hens in the control (C) group were fed a basic diet devoid of CHMs, the crushed CHM (CT), fermented CHM (FC), and enzymatically fermented CHM (EFT) groups received diets containing 2% crushed CHM, 2% fermented CHM, and 2% enzymatically fermented CHM, respectively. Results: Compared with crushed CHM, the acid detergent fiber, total flavonoids, and total saponins contents of fermented CHM showed improvement (p<0.05); furthermore, the neutral and acid detergent fiber, total flavonoids, and total saponins contents of enzymatically fermented CHM improved (p<0.05). At 5 to 8 weeks, hens in the FC and EFT groups showed increased laying rates, haugh unit, albumin height, yolk color, shell thickness, and shell strength compared with those in the C group (p<0.05). Compared with the FC group, the laying rate, albumin height, and Shell thickness in the EFT group was increased (p<0.05). Compared with the C, CT, and FC groups, the EFT group showed reduced serum total cholesterol and increased serum luteinizing hormone levels and mRNA expressions of follicle stimulating hormone receptor and luteinizing hormone receptor (p<0.05). Conclusion: These results indicated that the ETF group improved the laying rate and egg quality and regulated the lipid metabolism in aged hens. The mechanism underlying this effect was likely related to cell wall degradation of CHM and increased serum levels of luteinizing hormone and mRNA expression of the ovarian hormone receptor.

Perinatal Nutrition of the Calf and Its Consequences for Lifelong Productivity

  • Wynn, P.C.;Warriach, H.M.;Morgan, A.;McGill, D.M.;Hanif, S.;Sarwar, M.;Iqbal, A.;Sheehy, P.A.;Bush, R.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.756-764
    • /
    • 2009
  • Provision of an optimal environment for the calf is critical to establishing the patterns of growth and development essential to allow the heifer to express its genetic potential for milk output and reproductive capacity during its productive life. Maternal nutrition during gestation is now recognised as a key to genetic programming in utero and this influence is extended through the complexity of hormones, growth factors and immunostimulants incorporated into colostrum and milk consumed by the neonatal calf. This natural process is most often disrupted as calves are weaned abruptly to maximise milk output for commercial exploitation. The key then is to accelerate the rate of maturation of the ruminal epithelium through the provision of concentrate starter rations and high quality forage, which promote VFA production. Management systems to promote these processes in Holstein Friesian cattle are well developed, however, little is known of these processes with buffalo and Bos indicus dairy cattle such as the Sahiwal. The development of methods to program the neonate to grow faster to puberty in these species will be important to improving their productivity for the dairy industries in tropical and sub-tropical environments in the future.

Effect of Serum IGF-I on Progesterone Concentration during Early Pregnancy in Korean Native Cattle (Hanwoo)

  • Ryu, Yang-Hwan;Yang, Jong-Yong;Seo, Dong-Sam;Ko, Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.176-179
    • /
    • 2003
  • Insulin-like growth factor-I (IGF-I) is a polypeptide that has the function of regulating the expression of steroid hormones through endocrine, paracrine, and autocrine actions in reproductive organs. Moreover, IGF-I is involved in ovulation, implantation, maintenance of pregnancy, and development of fetuses in animals. Therefore, this study was conducted to investigate the effects of serum IGF-I concentration on progesterone ($P_4$) concentration and pregnancy rates in Korean native cattle (Hanwoo). Blood was collected at estrus (Day 0) and Day 11. Artificial insemination was performed at Day 0. Serum IGF-I and $P_4$ concentrations were measured by radioimmunoassay (RIA). Overall, $P_4$ concentration was higher at Day 11 than Day 0, whereas the pattern of IGF-I concentration was reversed. When animals were divided into two groups depending on the pregnancy status, $P_4$ concentrations of the pregnant group was significantly higher than that of the non-pregnant group at Day 0 (p<0.05) and Day 11 (p<0.05). But, lower IGF-I concentrations were detected in the pregnant group at Day 0 (p<0.05) and Day 11 (p<0.05) compared to the non-pregnant group. In conclusion, these results indicated that serum IGF-I is inversely associated with $P_4$ concentration during early pregnancy in Hanwoo.