• Title/Summary/Keyword: reproductive competence

Search Result 76, Processing Time 0.02 seconds

Effect of Humulus japonicus Extract on Sperm Motility, Fertilization Status and Subsequent Preimplantation Embryo Development in Cattle (소에서 정자활성, 수정 양상 및 착상전 지속적 수정란 발달에 있어서 환삼덩굴 추출액의 효과)

  • Min, Sung-Hun;Kim, Jin-Woo;Do, Geon-Yeop;Lee, Yong-Hee;Ahn, Jae-Hyun;Chae, Sung-Kyu;Kim, Byung Oh;Park, Humdai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.38 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • Humulus japonicus is an ornamental plant in the Cannabaceae family. Although the mode of action of Humulus japonicus is not fully understood, a strong relationship was observed between anti-inflammatory and anticancer in some types of cells. Recent studies also have shown that Humulus japonicus possesses anti-inflammatory activities and may significantly improve antioxidant potential in Raw 264.7 macrophage cells. Thus, the aim of this study was evaluated the effect of Humulus japonicus extract on sperm motility and subsequent preimplantation developmental competence of the bovine embryos. After in vitro maturation, the oocytes with sperms were exposed in in vitro fertilization (IVF) medium supplemented with Humulus japonicus extract (0.01, 0.05, $0.1{\mu}g/mL$, respectively) for 1 day. In our results, exposure of IVF medium to Humulus japonicus extract did not affect sperm motility and percentage of penetrated oocytes but ROS intensity was significantly decreased by $0.01{\mu}g/mL$ compared with other groups (p< 0.05). Moreover, treatment with $0.01{\mu}g/mL$ of Humulus japonicus extract was higher the frequency of blastocyst formation than the any other groups (p<0.05). Otherwise, treatment with $0.01{\mu}g/mL$ of Humulus japonicus extract not increased the total cell number but reduced apoptotic-positive nuclei number. In conclusion, our results indicate that supplementation of Humulus japonicus extract in IVF medium may have important implications for improving early embryonic development in bovine embryos.

The antioxidant icariin protects porcine oocytes from age-related damage in vitro

  • Yoon, Jae-Wook;Lee, Seung-Eun;Park, Yun-Gwi;Kim, Won-Jae;Park, Hyo-Jin;Park, Chan-Oh;Kim, So-Hee;Oh, Seung-Hwan;Lee, Do-Geon;Pyeon, Da-Bin;Kim, Eun-Young;Park, Se-Pill
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.546-557
    • /
    • 2021
  • Objective: If fertilization does not occur within a specific period, the quality of unfertilized oocytes in the oviduct (in vivo aging) or in culture (in vitro aging) will deteriorate over time. Icariin (ICA), found in all species of Epimedium herbs, has strong antioxidant activity, and is thought to exert anti-aging effects in vitro. We asked whether ICA protects oocytes against age-related changes in vitro. Methods: We analyzed the reactive oxygen species (ROS) levels and expression of antioxidant, maternal, and estrogen receptor genes, and along with spindle morphology, and the developmental competence and quality of embryos in the presence and absence of ICA. Results: Treatment with 5 μM ICA (ICA-5) led to a significant reduction in ROS activity, but increased mRNA expression of glutathione and antioxidant genes (superoxide dismutase 1 [SOD1], SOD2, peroxiredoxin 5, and nuclear factor erythroid 2-like 2), during aging in vitro. In addition, ICA-5 prevented defects in spindle formation and chromosomal alignment, and increased mRNA expression of cytoplasmic maturation factor genes (bone morphogenetic protein 15, cyclin B1, MOS proto-oncogene, serine/threonine kinase, and growth differentiation factor-9). It also prevented apoptosis, increased mRNA expression of antiapoptotic genes (BCL2-like 1 and baculoviral IAP repeat-containing 5), and reduced mRNA expression of pro-apoptotic genes (BCL2 antagonist/killer 1 and activation of caspase-3). Although the maturation and cleavage rates were similar in all groups, the total cell number per blastocyst and the percentage of apoptotic cells at the blastocyst stage were higher and lower, respectively, in the control and ICA-5 groups than in the aging group. Conclusion: ICA protects oocytes against damage during aging in vitro; therefore, it can be used to improve assisted reproductive technologies.

Effect of Luteal Morphology of Donors on the Maturation and Subsequent Development in Vitro of Bovine Immature Oocytes (소 미성숙난자의 체외성숙과 배발생에 황체의 형태가 미치는 영향)

  • Kim, B. K.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2000
  • The nuclear maturation and developmental competence of immature, oocytes collected from donors at various morphology of corpus luteum (CL) and fertilized in vitro was investigated by comparing the meiotic activity and the yields of embryos. Ovaries were divided and classified into 4 groups as the following criteria : Group 1 ; ovaries showed evidence of recent ovulation (corpus hemorragicum). Group 2 ; apex of CL was red or brown. Vasculization was limited to periphery of CL. Group 3 ; apex of CL was orange or tan. Vasculization was covered over apex of CL. Group 4 ; CL was light yellow to white and firm in texture and the vascular network on the surface of CL had disappeared. Modified TCM 199 was used for maturation in vitro of immature oocytes and development was induced by using TLP-PVA as a basic medium. When oocytes collected from each group of donors had been matured for 4, 14, and 24 hours in vitro, the proportion of oocytes reaching metaphase I and metaphase II were not different among oocytes from 4 group of ovaries. Mature metaphase II stage of oocytes in each group was first observed at 14 hours, whereas completion of maturation of. oocytes in each group was at 24 hours. Luteal morphology of ovaries had little effect on the proportion of embryos reached 2 cells and 8 cell stage. However, the proportion of embryos cleaved to morula and blastocyst stage was significantly higher in the oocytes obtained from group 1 and 3 than in the oocytes from group 2 and 4 (p<0.05). This data suggest that reproductive status of the donor significantly influence the yield of in vitro embryos.

  • PDF

Hsp90 Inhibitor Induces Cell Cycle Arrest and Apoptosis of Early Embryos and Primary Cells in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Hong, Joo-Hee;Park, Hum-Dai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.33-45
    • /
    • 2011
  • Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of cancer cell. Inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the cancer cell was reported. However, its role during oocyte maturation and early embryo development is very insufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on meiotic maturation and early embryonic development in pigs. We also investigated several indicators of developmental potential, including structural integrity, gene expression (Hsp90-, cell cycle-, and apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Then, we examined the roles of Hsp90 inhibitor on viability of primary cells in pigs. Porcine oocytes were cultured in the NCSU-23 medium with or without 17-AAG for 44 h. The proportion of GV arrested oocytes was significantly different between the 17-AAG treated and untreated group (78.2 vs 34.8%, p<0.05). After completion of meiotic maturation, the proportion of MII oocytes was lower in the 17-AAG treated group than in the control group (27.9 vs 71.0%, p<0.05). After IVF, the percentage of penetrated oocytes was significantly lower in the 17-AAG treated group (25.2%), resulting in lower normal pronucleus formation (2PN of 14.6%). Therefore, the inhibition of meiotic progression by Hsp90 inhibitor played a critical role in fertilization status. Porcine embryo were cultured in the PZM-3 medium with or without 17-AAG for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (7.5 vs 4.4, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. The mRNA expressions of cell cycle-related genes were down-regulated in the 17-AAG treated group compared with control. Also, the expression of the pro-apoptotic gene Bax increased in 17-AAG treated group, whereas expression of the anti-apoptotic gene Bel-XL decreased. However, the expression of ER stress-related genes did not changed by 17-AAG. Cultured pESF cells were treated with or without 17-AAG and used for MIT assay. The results showed that viability of pESF cells were decreased by treatment of 17-AAG ($2{\mu}M$) for 24 hr. These results indicated that 17-AAG decreased cell proliferation and increased cell death. Expression patterns Hsp90 complex genes (Hsp70 and p23), cell cycle-related genes (cdc2 and cdc25c) and apoptosis-related genes (Bax and Bcl-XL) were significantly changed by using RT-PCR analysis. The spliced form of pXbp-1 product (pXbp-1s) was detected in the tunicamycin (TM) treated cells, but it is not detected in 17-AAG treated cells. In conclusion, Hsp90 appears to play a direct role in porcine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with cell cycle- and apoptosis-related genes expression in developing porcine embryos.

Caffeine treatment during in vitro maturation improves developmental competence of morphologically poor oocytes after somatic cell nuclear transfer in pigs (돼지 난자의 체외성숙에서 Caffeine 처리가 난자 성숙과 체세포 핵이식 배아의 체외발육에 미치는 영향)

  • Lee, Joohyeong;You, Jinyoung;Lee, Hanna;Shin, Hyeji;Lee, Geun-Shik;Lee, Seung Tae;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • In most mammals, metaphase II (MII) oocytes having high maturation promoting factor (MPF) activity have been considered as good oocytes and then used for assisted reproductive technologies including somatic cell nuclear transfer (SCNT). Caffeine increases MPF activity in mammalian oocytes by inhibiting p34cdc2 phosphorylation. The objective of this study was to investigate the effects of caffeine treatment during in vitro maturation (IVM) on oocyte maturation and embryonic development after SCNT in pigs. To this end, morphologically good (MGCOCs) and poor oocytes (MPCOCs) based on the thickness of cumulus cell layer were untreated or treated with 2.5 mM caffeine during 22-42, 34-42, or 38-42 h of IVM according to the experimental design. Caffeine treatment for 20 h during 22-42 h of IVM significantly inhibited nuclear maturation compared to no treatment. Blastocyst formation of SCNT embryos was not influenced by the caffeine treatment during 38-42 h of IVM in MGCOCs (41.1-42.1%) but was significantly improved in MPCOCs compared to no treatment (43.4 vs. 30.1%, P<0.05). No significant effects of caffeine treatment was observed in embryo cleavage (78.7-88.0%) and mean cell number in blastocyst (38.7-43.5 cells). The MPF activity of MII oocytes in terms of p34cdc2 kinase activity was not influenced by the caffeine treatment in MGCOCs (160.4 vs. 194.3 pg/ml) but significantly increased in MPCOCs (133.9 vs. 204.8 pg/ml). Our results demonstrate that caffeine treatment during 38-42 h of IVM improves developmental competence of SCNT embryos derived from MPCOCs by influencing cytoplasmic maturation including increased MPF activity in IVM oocytes in pigs.

Reproductive Performance of Holstein Dairy Cows Grazing in Dry-summer Subtropical Climatic Conditions: Effect of Heat Stress and Heat Shock on Meiotic Competence and In vitro Fertilization

  • Pavani, Krishna;Carvalhais, Isabel;Faheem, Marwa;Chaveiro, Antonio;Reis, Francisco Vieira;da Silva, Fernando Moreira
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.334-342
    • /
    • 2015
  • The present study was designed to evaluate how environmental factors in a dry-summer subtropical climate in Terceira-Azores (situated in the North Atlantic Ocean: $38^{\circ}43^{\prime}N27^{\circ}12^{\prime}W$) can affect dairy cow (Holstein) fertility, as well as seasonal influence on in vitro oocytes maturation and embryos development. Impact of heat shock (HS) effects on in vitro oocyte's maturation and further embryo development after in vitro fertilization (IVF) was also evaluated. For such purpose the result of the first artificial insemination (AI) performed 60 to 90 days after calving of 6,300 cows were recorded for one year. In parallel, climatic data was obtained at different elevation points (n = 5) from 0 to 1,000 m and grazing points from 0 to 500 m, in Terceira island, and the temperature humidity index (THI) was calculated. For in vitro experiments, oocytes (n = 706) were collected weekly during all year, for meiotic maturation and IVF. Further, to evaluate HS effect, 891 oocytes were collected in the cold moths (December, January, February and March) and divided in three groups treated to HS for 24 h during in vitro maturation at: C (Control = $38.5^{\circ}C$), HS1 ($39.5^{\circ}C$) and HS2 ($40.5^{\circ}C$). Oocytes from each group were used for meiotic assessment and IVF. Cleavage, morula and blastocyst development were evaluated respectively on day 2, 6, and 9 after IVF. A negative correlation between cow's conception rate (CR) and THI in grazing points (-91.3%; p<0.001) was observed. Mean THI in warmer months (June, July, August and September) was $71.7{\pm}0.7$ and the CR ($40.2{\pm}1.5%$) while in cold months THI was $62.8{\pm}0.2$ and CR was $63.8{\pm}0.4%$. A similar impact was obtained with in vitro results in which nuclear maturation rate (NMR) ranged from 78.4% (${\pm}8.0$) to 44.3% (${\pm}8.1$), while embryos development ranged from 53.8% (${\pm}5.8$) to 36.3% (${\pm}3.3$) in cold and warmer months respectively. In vitro HS results showed a significant decline (p<0.05) on NMR of oocytes for every $1^{\circ}C$ rising temperature ($78.4{\pm}8.0$, $21.7{\pm}3.1$ and $8.9{\pm}2.2$, respectively for C, HS1, and HS2). Similar results were observed in cleavage rate and embryo development, showing a clear correlation (96.9 p<0.05) between NMR and embryo development with respect to temperatures. Results clearly demonstrated that, up to a THI of 70.6, a decrease in the CR occurs in first AI after calving; this impairment was confirmed with in vitro results.